
z/VM

TCP/IP LDAP Administration Guide
version 6 release 1

SC24-6236-00

���

z/VM

TCP/IP LDAP Administration Guide
version 6 release 1

SC24-6236-00

���

Note:
Before using this information and the product it supports, read the information under “Notices” on page 235.

This edition applies to version 6, release 1, modification 0 of IBM z/VM (product number 5741-A07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC24-6140-01.

© Copyright International Business Machines Corporation 2007, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document . ix
Intended audience . ix
Conventions and terminology . ix

How the term “internet” is used in this document ix
How to Read Syntax Diagrams ix

Where to Find More Information xi

How to send your comments to IBM xiii
If you have a technical problem. xiii

Summary of changes . xv
SC24-6236-00, z/VM Version 6 Release 1 xv

Chapter 1. Introducing the LDAP server 1
What is a directory service? . 1
What is LDAP? . 2

How is information stored in the directory? 2
How is the information arranged? 2
How is the information referenced? 3
How is the information accessed? 4
How is the information protected from unauthorized access? 4
How does LDAP work? . 4
What about X.500? . 4

What are the capabilities of the z/VM LDAP server?. 5

Chapter 2. Data model . 9
Relative distinguished names . 9
Distinguished name syntax . 10

Domain component naming 11
RACF-style distinguished names 11

Chapter 3. LDAP directory schema. 13
Setting up the schema for LDBM - new users 13
Upgrading schema for LDBM. 13
Schema introduction . 14

Schema attribute syntax . 20
LDAP schema attributes . 22

Defining new schema elements 28
Updating the schema . 30

Changing the initial schema 31
Replacing individual schema values 31
Updating a numeric object identifier (NOID) 33
Analyzing schema errors . 33

Retrieving the schema . 34
Displaying the schema entry 34
Finding the subschemaSubentry DN 35

Chapter 4. Modify DN operations 37
Modify DN operation syntax . 37
Considerations in the use of Modify DN operations 41
Eligibility of entries for rename 42
Concurrency considerations between Modify DN operations and other LDAP

operations . 43

© Copyright IBM Corp. 2007, 2009 iii

Access control and ownership 44
Relocating an entry . 45
Relocating an entry with DN realignment requested 45
Access control changes . 46
Ownership changes . 48
Modify DN operations related to suffix DNs 49

Scenario constraints . 49
Example scenarios . 49

Modify DN operations and replication. 55
Periodic validation of compatible server versions in replica servers 56
Loss of replication synchronization due to incompatible replica server

versions . 57
Loss of replication synchronization due to incompatible replica server

versions - recovery . 57

Chapter 5. Accessing RACF information 59
SDBM authorization . 59
Binding using a RACF user ID and password or password phrase 59
SDBM group gathering . 60
Associating LDAP attributes to RACF fields 61
Special usage of racfAttributes and racfConnectAttributes 64
RACF namespace entries . 65

SDBM schema information 65
SDBM support for pound sign 65

Control of access to RACF data 66
SDBM operational behavior . 66

SDBM search capabilities . 70
Retrieving RACF user password and password phrase envelopes 74
Using SDBM to change a user password or password phrase in RACF . . . 74
Using LDAP operation utilities with SDBM 75
Deleting attributes . 78

Chapter 6. CRAM-MD5 and DIGEST-MD5 authentication 81
DIGEST-MD5 bind mechanism restrictions in the z/VM LDAP server 81
Considerations for setting up an LDBM backend for CRAM-MD5 and

DIGEST-MD5 authentication 81
CRAM-MD5 and DIGEST-MD5 configuration option 83
Example of setting up for CRAM-MD5 and DIGEST-MD5 83

Chapter 7. Static, dynamic, and nested groups 85
Static groups . 85
Dynamic groups . 85
Nested groups . 87
Determining group membership 87

Displaying group membership 88
ACL restrictions on displaying group membership 88
ACL restrictions on group gathering 89

Group examples . 89
Examples of adding, modifying, and deleting group entries 89
Examples of querying group membership 91

Chapter 8. Using access control. 97
Access control attributes . 97

aclEntry attribute . 98
aclPropagate attribute . 101
aclSource attribute . 102

iv z/VM: TCP/IP LDAP Administration Guide

entryOwner attribute . 102
ownerPropagate attribute. 102
ownerSource attribute . 102

Initializing ACLs with LDBM . 103
Default ACLs with LDBM . 103
Initializing ACLs with GDBM 103
Initializing ACLs with schema entry 103
Access determination . 103

Search . 105
Filter . 105
Compare . 106
Requested attributes . 106

Propagating ACLs . 106
Example of propagation . 106
Examples of overrides. 107
Other examples . 107

Access control groups . 108
Associating DNs and access groups with a bound user 108
Deleting a user or a group . 109
Retrieving ACL information from the server 109
Creating and managing access controls 110

Creating an ACL . 110
Modifying an ACL . 112
Deleting an ACL . 114
Creating an owner for an entry 114
Modifying an owner for an entry 116
Deleting an owner for an entry 117
Creating a group for use in ACLs and entry owner settings 118

Chapter 9. Replication . 121
ibm-entryuuid replication . 122
Complex modify DN replication 122
Password encryption and replication 122
Replicating server . 122

Replica entries . 123
Adding replica entries in LDBM 125

Searching a replica entry. 126
Displaying replication status. 126

Maintenance mode . 126
Replica server. 127

Populating a replica. 127
Configuring the replica . 127
LDAP update operations on read-only replicas 129

Changing a read-only replica to a master 129
Peer to peer replication . 130

Server configuration . 130
Conflict resolution . 130

Adding a peer replica to an existing server 130
Upgrading a read-only replica to be a peer replica of the master server . . . 131
Downgrading a peer server to read-only replica 132
SSL/TLS and replication . 132

Replica server with SSL/TLS enablement. 132
Replicating server with SSL/TLS enablement 132

Replication error log . 133
Troubleshooting . 134

Recovering from out-of-sync conditions 135

Contents v

Chapter 10. Alias . 137
Impact of aliasing on search performance 137
Alias entry . 138

Alias entry rules . 138
Dereferencing an alias . 138

Dereferencing during search 139
Alias examples . 140

Chapter 11. Change logging 145
Configuring the GDBM backend 146

Configuring a file-based GDBM backend 146
Additional required configuration 146
When changes are logged . 147

RACF changes . 147
LDBM and schema changes 147

Change log schema . 147
Change log entries . 148
Searching the change log . 149
Passwords in change log entries 150
Unloading and loading the change log 150
Trimming the change log . 150
Change log information in the root DSE entry 150
How to set up and use the LDAP server for logging changes 151

Chapter 12. Referrals . 155
Using the referral object class and the ref attribute 155

Creating referral entries . 155
Associating servers with referrals. 156

Pointing to other servers . 156
Defining the default referral 157

Processing referrals . 158
Using LDAP Version 2 referrals 158
Using LDAP Version 3 referrals 159
Bind considerations for referrals 160

Example: associating servers through referrals and replication 160

Chapter 13. Organizing the directory namespace. 167
Information layout . 167
Example of building an enterprise directory namespace 168
Priming the directory servers with information 170

Using LDIF format to represent LDAP entries 170
Generating the file . 172

Setting up for replication . 174
Defining another LDAP server 174
Preparing the replica . 174
Notifying users of the replica 175

Chapter 14. Client considerations 177
Root DSE . 177

Root DSE search with base scope 177
Root DSE search with subtree scope (Null-based subtree search) 179

Monitor support . 180
CRAM-MD5 authentication support 180
UTF-8 data over the LDAP Version 2 protocol 180
Attribute types stored and returned in lowercase 180
Abandon behavior . 180

vi z/VM: TCP/IP LDAP Administration Guide

Reason codes. 180

Chapter 15. SSL Certificate/Key Management and SSL Tracing Information 193
Key Database Files . 193
SSL Tracing Information . 193

Chapter 16. Performance tuning 195
Overview . 195
General LDAP server performance considerations 195

Threads . 195
Debug settings . 195
Storage in the LDAP virtual machine 195
LDAP server cache tuning 195
Operations monitor . 196

LDBM performance considerations 197
Storage in the LDAP virtual machine for LDBM data. 197
LDAP server initialization time with LDBM 198
Database commit processing 198
DASD space for LDBM data 198

Monitoring performance with cn=monitor 199
Monitor search examples. 204

Large access groups considerations 206
LE heap pools considerations 207

GDBM (Changelog) performance considerations 208
SDBM performance considerations 208

Appendix A. Initial LDAP server schema 209

Appendix B. Supported server controls 219
authenticateOnly . 219
IBMModifyDNRealignDNAttributesControl. 219
IBMModifyDNTimelimitControl 220
IBMSchemaReplaceByValueControl 220
manageDsaIT . 221
PersistentSearch. 221
replicateOperationalAttributes 223

Appendix C. Related Protocol Specifications 225

Appendix D. Abbreviations and Acronyms 231

Notices . 235
Programming Interface Information 236
Trademarks. 237

Glossary . 239

Bibliography . 241
Where to Get z/VM Information 241
z/VM Base Library . 241

Overview . 241
Installation, Migration, and Service 241
Planning and Administration. 241
Customization and Tuning 241
Operation and Use . 241
Application Programming. 241

Contents vii

Diagnosis . 242
z/VM Facilities and Features 242

Data Facility Storage Management Subsystem for VM 242
Directory Maintenance Facility for z/VM 242
Open Systems Adapter/Support Facility 242
Performance Toolkit for VM 243
RACF Security Server for z/VM 243
Remote Spooling Communications Subsystem Networking for z/VM 243

Prerequisite Products . 243
Device Support Facilities . 243
Environmental Record Editing and Printing Program. 243

Other TCP/IP Related Publications 243

Index . 245

viii z/VM: TCP/IP LDAP Administration Guide

About this document

This document is about administering the Lightweight Directory Access Protocol
(LDAP) server on z/VM®, which includes tasks such as:

v Setting up schemas

v Modifying DN operations

v Accessing security information and authenticating

v Using access control

v Replication directories

v Creating aliases

v Configuring change logs

v Setting up referrals

v Organizing the directory namespace.

Intended audience
This document is intended to assist Lightweight Directory Access Protocol (LDAP)
administration. This document is also intended for anyone who implements the
directory service.

To do LDAP administration, you should be experienced in and have previous
knowledge of directory services. You should have a good understanding of the
TCP/IP in general and how z/VM implements the TCP/IP protocol suite. Also, you
should understand the Lightweight Directory Access Protocol (LDAP).

Conventions and terminology
This topic describes important terminology and style conventions used in this
document.

How the term “internet” is used in this document
In this document, an internet is a logical collection of networks supported by
routers, gateways, bridges, hosts, and various layers of protocols, which permit the
network to function as a large, virtual network.

Note: The term “internet” is used as a generic term for a TCP/IP network, and
should not be confused with the Internet, which consists of large national
backbone networks (such as MILNET, NSFNet, and CREN) and a myriad of
regional and local campus networks worldwide.

How to Read Syntax Diagrams
This section describes how to read the syntax diagrams in this document.

Getting Started: To read a syntax diagram, follow the path of the line. Read from
left to right and top to bottom.

v The ��─── symbol indicates the beginning of a syntax diagram.

v The ───� symbol, at the end of a line, indicates that the syntax diagram
continues on the next line.

v The �─── symbol, at the beginning of a line, indicates that a syntax diagram
continues from the previous line.

© Copyright IBM Corp. 2007, 2009 ix

v The ───�� symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

v Directly on the line (required)

v Above the line (default)

v Below the line (optional).

Syntax Diagram Description Example

Abbreviations:

Uppercase letters denote the shortest acceptable
abbreviation. If an item appears entirely in uppercase
letters, it cannot be abbreviated.

You can type the item in uppercase letters, lowercase
letters, or any combination.

In this example, you can enter KEYWO, KEYWOR, or
KEYWORD in any combination of uppercase and
lowercase letters.

�� KEYWOrd ��

Symbols:

You must code these symbols exactly as they appear in
the syntax diagram.

* Asterisk

: Colon

, Comma

= Equal Sign

- Hyphen

() Parentheses

. Period

Variables:

Highlighted lowercase items (like this) denote variables.

In this example, var_name represents a variable you must
specify when you code the KEYWORD command.

�� KEYWOrd var_name ��

Repetition:

An arrow returning to the left means that the item can be
repeated. �� � repeat ��

A character within the arrow means you must separate
repeated items with that character.

�� �

,

repeat ��

A footnote (1) by the arrow references a limit that tells
how many times the item can be repeated.

�� �
(1)

repeat ��

Notes:

1 Specify repeat up to 5 times.

x z/VM: TCP/IP LDAP Administration Guide

Syntax Diagram Description Example

Required Choices:

When two or more items are in a stack and one of them is
on the line, you must specify one item.

In this example, you must choose A, B, or C.

�� A
B
C

��

Optional Choice:

When an item is below the line, the item is optional. In this
example, you can choose A or nothing at all.

When two or more items are in a stack below the line, all
of them are optional. In this example, you can choose A,
B, C, or nothing at all.

��
A

��

��
A
B
C

��

Defaults:

Defaults are above the line. The system uses the default
unless you override it. You can override the default by
coding an option from the stack below the line.

In this example, A is the default. You can override A by
choosing B or C.

��
A

B
C

��

Repeatable Choices:

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B,
or C.

�� � A
B
C

��

Syntax Fragments:

Some diagrams, because of their length, must fragment
the syntax. The fragment name appears between vertical
bars in the diagram. The expanded fragment appears in
the diagram after a heading with the same fragment
name.

In this example, the fragment is named “A Fragment.”

�� A Fragment ��

A Fragment:

A

B
C

Where to Find More Information
Other z/VM manuals contain information about LDAP:

v For information about configuring the LDAP server, see z/VM: TCP/IP Planning
and Customization.

v LDAP client utilities are documented in z/VM: TCP/IP User’s Guide.

v Information about LDAP messages is in z/VM: TCP/IP Messages and Codes.

Appendix D, “Abbreviations and Acronyms,” on page 231, lists the abbreviations
and acronyms that are used throughout this document.

About this document xi

The “Glossary” on page 239, defines terms used throughout this document that are
associated with TCP/IP communication in an internet environment.

For more information about related publications, see the documents listed in the
“Bibliography” on page 241.

Links to Other Online Documents
If you are viewing the Adobe® Portable Document Format (PDF) version of this
document, it might contain links to other documents. A link to another
document is based on the name of the requested PDF file. The name of the
PDF file for an IBM document is unique and identifies the edition. The links
provided in this document are for the editions (PDF names) that were current
when the PDF file for this document was generated. However, newer editions
of some documents (with different PDF names) might exist. A link from this
document to another document works only when both documents reside in the
same directory.

xii z/VM: TCP/IP LDAP Administration Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

1. Send an e-mail to mhvrcfs@us.ibm.com

2. Visit the z/VM reader's comments Web page at www.ibm.com/systems/z/os/zvm/
zvmforms/webqs.html

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your e-mail address
v Your telephone or fax number
v The publication title and order number:

z/VM V6R1 TCP/IP LDAP Administration Guide
SC24-6236-00

v The topic and page number related to your comment
v The text of your comment

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit to IBM.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:

v Contact your IBM service representative.

v Contact IBM technical support.

v Visit the z/VM support Web page at www.vm.ibm.com/service/

v Visit the IBM mainframes support Web page at www.ibm.com/systems/support/z/

© Copyright IBM Corp. 2007, 2009 xiii

http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.vm.ibm.com/service/
http://www.ibm.com/systems/support/z/

xiv z/VM: TCP/IP LDAP Administration Guide

Summary of changes

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the changes. Some program updates might be provided through z/VM
service by program temporary fixes (PTFs) for authorized program analysis reports
(APARs), which also might be available for some prior releases.

SC24-6236-00, z/VM Version 6 Release 1
This edition includes changes or additions to support the general availability of z/VM
V6.1. For this edition, the following changes have been made:

v A clarification was added to the LDAP Program Call support. See “Additional
required configuration” on page 146.

v Reference information for the gskkyman and gsktrace utilities has been moved to
z/VM: TCP/IP User’s Guide.

© Copyright IBM Corp. 2007, 2009 xv

xvi z/VM: TCP/IP LDAP Administration Guide

Chapter 1. Introducing the LDAP server

The z/VM Lightweight Directory Access Protocol (LDAP) server is based on a
client/server model that provides client access to an LDAP server. An LDAP
directory provides an easy way to maintain directory information in a central location
for storage, update, retrieval, and exchange.

The LDAP server provides the following functions:
v Interoperability with any Version 2 or Version 3 LDAP directory client
v Access controls on directory information, using static, dynamic, and nested

groups
v Secure Sockets Layer (SSL) communication (SSL V3 and TLS V1)
v Start TLS (Transport Layer Security) activation of secure communication
v Client and server authentication using SSL/TLS
v Password encryption
v Replication
v Referrals
v Aliases
v Change logging
v LDAP Version 2 and Version 3 protocol support
v Schema publication and update
v Native authentication
v CRAM-MD5 (Challenge-Response Authentication Method) and DIGEST-MD5

authentication
v Root DSE information
v LDAP access to information stored in RACF®

v Plug-in support to extend the LDAP server.

What is a directory service?
A directory is like a database, but tends to contain more descriptive, attribute-based
information. The information in a directory is generally read much more often than it
is written. As a consequence, directories do not usually implement the complicated
transaction or rollback schemes that relational databases use for doing high-volume
complex updates. Directory updates are typically simple all-or-nothing changes, if
they are allowed at all. Directories are tuned to give quick-response to high-volume
lookup or search operations. They may have the ability to replicate information
widely in order to increase availability and reliability, while reducing response time.
When directory information is replicated, temporary inconsistencies between the
replicas are considered acceptable, as long as they get in sync eventually.

There are many different ways to provide a directory service. Different methods
allow different kinds of information to be stored in the directory, place different
requirements on how that information can be referenced, queried and updated, how
it is protected from unauthorized access, and so on. Some directory services are
local, providing service to a restricted context (for example, the finger service on a
single machine). Other services are global, providing service to a much broader
context (for example, the entire Internet). Global services are usually distributed,
meaning that the data they contain is spread across many machines, all of which
cooperate to provide the directory service. Typically a global service defines a
uniform namespace which gives the same view of the data no matter where you are
in relation to the data itself.

© Copyright IBM Corp. 2007, 2009 1

What is LDAP?
The LDAP server’s model for the directory service is based on a global directory
model called LDAP, which stands for the Lightweight Directory Access Protocol.
LDAP Version 2 (V2) and LDAP Version 3 (V3), both supported in z/VM, are
directory service protocols that run over TCP/IP. The details of LDAP V2 are defined
in Internet Engineering Task Force (IETF) Request for Comments (RFC) 1777, The
Lightweight Directory Access Protocol, and the details of LDAP V3 are defined in
IETF RFCs 2251 through 2256. For a list of supported RFCs, see Appendix C,
“Related Protocol Specifications,” on page 225.

This section gives an overview of LDAP from a user’s perspective.

How is information stored in the directory?
The LDAP directory service model is based on entries. An entry is a collection of
attributes that has a name, called a distinguished name (DN). The DN is used to
refer to the entry unambiguously. Each of the entry’s attributes has a type and one
or more values. The types are typically mnemonic strings, like cn for common
name, or mail for e-mail address. The values depend on what type of attribute it is.
For example, a mail attribute might contain an e-mail address with an attribute
value of thj@vnet.ibm.com. A jpegPhoto attribute would contain a photograph in
binary JPEG format.

How is the information arranged?
In LDAP, directory entries are arranged in a hierarchical tree-like structure that
sometimes reflects political, geographic or organizational boundaries. Entries
representing countries appear at the top of the tree. Below them are entries
representing states or national organizations. Below them might be entries
representing people, organizational units, printers, documents, or just about
anything else you can think of. Figure 1 on page 3 shows an example LDAP
directory tree, which should help make things clear.

2 z/VM: TCP/IP LDAP Administration Guide

In addition, LDAP allows you to control which attributes are required and allowed in
an entry through the use of a special attribute called object class. The values of the
objectClass attribute determine the attributes that can be specified in the entry.

How is the information referenced?
An entry is referenced by its distinguished name, which is constructed by taking the
name of the entry itself (called the relative distinguished name, or RDN®) and
concatenating the names of its ancestor entries. For example, the entry for Tim
Jones in the example above has an RDN of cn=Tim Jones and a DN of cn=Tim
Jones, o=IBM, c=US. The full DN format is described in IETF RFC 2253, LDAP
(V3): UTF-8 String Representation of Distinguished Names.

The LDAP server supports different naming formats. While naming based on
country, organization, and organizational unit is one method, another method is to
name entries based on an organization’s registered DNS domain name. Names of
this form look like: cn=Tim Smith,dc=vnet,dc=ibm,dc=com. These naming formats
can be mixed as well, for example: cn=Tim Brown,ou=Sales,dc=ibm,dc=com.

LDAP Directory Content
"root"

c=UK
c=US
objectclass=country
c=US

objectclass=organization
o=IBM

o=IBM

cn=Tim Jones

RDN: cn=Tim Jones
DN: cn=Tim Jones, o=IBM, c=US

objectclass=person
cn=Tim Jones
mail=thj@vnet.ibm.com
mail=jonesth@us.ibm.com

o=Tivoli

All entries have attributes (and values)

objectclass is an attribute in all entries
Attributes grouped into required and allowed

o=Lotus

Figure 1. Directory hierarchy example

Chapter 1. Introducing the LDAP server 3

How is the information accessed?
LDAP defines operations for interrogating and updating the directory. Operations are
provided for adding an entry to, and deleting an entry from, the directory, changing
an existing entry, and changing the name of an entry. Most of the time, though,
LDAP is used to search for information in the directory. The LDAP search operation
allows some portion of the directory to be searched for entries that match some
criteria specified by a search filter. Information can be requested from each entry
that matches the criteria. The LDAP compare operation allows a value to be tested
in an entry without returning that value to the client.

An example of search is, you might want to search the entire directory subtree
below IBM® for people with the name Tim Jones, retrieving the e-mail address of
each entry found. LDAP lets you do this easily. Or you might want to search the
entries directly below the c=US entry for organizations with the string Acme in their
name, and that have a FAX number. LDAP lets you do this too. The section “How
does LDAP work?” describes in more detail what you can do with LDAP and how it
might be useful to you.

How is the information protected from unauthorized access?
LDAP client requests can be performed using an anonymous identity or the LDAP
bind operation can be used to supply an authentication identity. The LDAP server
can use the identity to perform authorization checking when accessing entries in the
directory. An Access Control List (ACL) provides a means to protect information
stored in an LDAP directory. An ACL is used to restrict access to different portions
of the directory, to specific directory entries, or to information within an entry. Access
control can be specified for individual users or for groups. This authentication
process can be used by distributed applications which need to implement some
form of authentication.

How does LDAP work?
LDAP directory service is based on a client/server model. One or more LDAP
servers contain the data making up the LDAP directory tree. An LDAP client
application connects to an LDAP server using LDAP APIs and asks it a question.
The server responds with the answer, or with a pointer to where the application can
get more information (typically, another LDAP server). With a properly-constructed
namespace, no matter which LDAP server an application connects to, it sees the
same view of the directory; a name presented to one LDAP server references the
same entry it would at another LDAP server. This is an important feature of a global
directory service, which LDAP servers can provide.

What about X.500?
LDAP was originally developed as a front end to X.500, the OSI directory service.
X.500 defines the Directory Access Protocol (DAP) for clients to use when
contacting directory servers. DAP has been characterized as a heavyweight
protocol that runs over a full OSI stack and requires a significant amount of
computing resources to run. LDAP runs directly over TCP and provides most of the
functionality of DAP at a much lower cost.

An LDAP server is meant to remove much of the burden from the server side just
as LDAP itself removed much of the burden from clients. If you are already running
an X.500 service and you want to continue to do so, you can probably stop reading
this guide, which is all about running LDAP through an LDAP server without running
X.500. If you are not running X.500, want to stop running X.500, or have no
immediate plans to run X.500, read on.

4 z/VM: TCP/IP LDAP Administration Guide

What are the capabilities of the z/VM LDAP server?
You can use the z/VM LDAP server to provide a directory service of your very own.
Your directory can contain just about anything you want to put in it. Some of the
z/VM LDAP server’s more interesting features and capabilities include:

v Multiple concurrent database instances (referred to as backends). The LDAP
server can be configured to serve multiple databases at the same time. This
means that a single z/VM LDAP server can respond to requests for many
logically different portions of the LDAP tree. A z/VM LDAP server can be
configured to provide access to RACF, as well as store application-specific
information.

v Robust general-purpose databases. The LDAP server comes with an LDBM
backend. There are no restrictions on the types of information that this backend
can contain. The LDBM backend keeps its entries in memory for quick access
and requires a minimum amount of setup. When the LDAP server is not running,
LDBM stores its directory information in OpenExtensions™ files.

v Access to RACF data. The LDAP server can be configured to provide read/write
access to RACF user, group, and connection profiles using the LDAP protocol.
The LDAP server’s access to RACF is managed by an additional configurable
backend called SDBM. For more information, see Chapter 5, “Accessing RACF
information,” on page 59.

Note: To use SDBM for ONLY authentication (LDAP bind processing), any
security manager implementing the SAF service required by the
__passwd() function call can be used. To use SDBM for accessing and
updating user, group, and connection profile information, RACF is
required.

v Access control. The LDAP server provides a rich and powerful access control
facility, allowing you to control access to the information in your database or
databases. You can control access to entries based on LDAP authentication
information, including users and groups. Group membership can be either static,
dynamic, or nested. Access control is configurable down to individual attributes
within entries. Also, access controls can be set up to explicitly deny access to
information. For more information on access control, see Chapter 8, “Using
access control,” on page 97. For more information about groups, see Chapter 7,
“Static, dynamic, and nested groups,” on page 85.

v Threads. The LDAP server is threaded for optimal performance. A single
multi-threaded z/VM LDAP server process handles all incoming requests,
reducing the amount of system overhead required.

v Replication.The LDAP server can be configured to maintain replica copies of its
database. Master/consumer replication scheme is vital in high-volume
environments where a single LDAP server just does not provide the necessary
availability or reliability. Peer-to-peer replication is also supported. For more
information, see Chapter 9, “Replication,” on page 121. This feature is contrasted
with multiple concurrent servers.

v Referrals. The LDAP server provides the ability to refer clients to additional
directory servers. Using referrals you can distribute processing overhead,
distribute administration of data along organizational boundaries, and provide
potential for widespread interconnection beyond an organization’s own
boundaries. For more information, see Chapter 12, “Referrals,” on page 155.

v Aliases. An alias entry can be created in the directory to point to another entry in
the directory. During search operations, an alias entry can provide a convenient
public name for an entry or subtree, hiding the more complex actual name of the

Chapter 1. Introducing the LDAP server 5

entry or subtree. It can also avoid the need to duplicate an entry in multiple
subtrees. For more information, see Chapter 10, “Alias,” on page 137.

v Change Logging. The LDAP server can be configured to create change log
entries in the GDBM backend. Each change log entry contains information about
a change to an entry in an LDBM backend, to the LDAP server schema, or to a
RACF user, group, or connection profile. For more information, see Chapter 11,
“Change logging,” on page 145.

v Configuration. The LDAP server is highly configurable through a single
configuration file which allows you to change just about everything you would
ever want to change. Configuration options have reasonable defaults, making
your job much easier. For more information, see “Configuring the LDAP Server”
in z/VM: TCP/IP Planning and Customization.

v Secure communications. The LDAP server can be configured to encrypt data to
and from LDAP clients using SSL. The LDAP server supports the Start TLS
extended operation to switch a non-secure connection to a secure connection. It
has a variety of ciphers for encryption to choose from, all of which provide server
and optionally client authentication through the use of X.509 certificates. For
more information, see “Setting up for SSL/TLS” in z/VM: TCP/IP Planning and
Customization.

v Native authentication. The z/VM LDAP server allows clients to bind to entries in
an LDBM backend by using the system for verifying the authentication attempt.
The client can perform a simple bind supplying an LDAP DN of an entry in an
LDBM backend along with a security manager-maintained password. Password
authentication is then performed by the security manager. For more information,
see “Native authentication” in z/VM: TCP/IP Planning and Customization.

Note: To use native authentication, any security manager implementing the SAF
service required by the __passwd() function call can be used.

v LDAP Version 3 protocol support. The LDAP server provides support for
Version 3 of the LDAP protocol in addition to the LDAP Version 2 protocol.
Version 3 includes:
– All protocol operations
– Implicit bind
– Certificate (or Simple Authentication and Security Layer) bind
– Version 3 referrals
– Aliases
– Controls
– Root DSE support
– Internationalization (UTF-8) support
– Modify name supported for all entries including subtree move
– Schema publication
– Additional syntax support
– Online schema update capability.

v Dynamic schema. The LDAP server allows the schema to be changed
dynamically through the LDAP protocol. For more information, see Chapter 3,
“LDAP directory schema,” on page 13.

v Internationalization (UTF-8) support. The LDAP server allows storage, update
and retrieval, through LDAP operations, of national language data using LDAP
Version 3 protocol. For more information, see “Internationalization Support” in
z/VM: TCP/IP Planning and Customization.

v SASL external bind and client and server authentication. The LDAP server
allows client applications to use a certificate when communicating with the server
using SSL/TLS communications. In order to use a certificate on bind, the server
must be configured to perform both client and server authentication. This ensures

6 z/VM: TCP/IP LDAP Administration Guide

both entities are who they claim to be. For more information, see “Setting up for
SSL/TLS” in z/VM: TCP/IP Planning and Customization.

v SASL CRAM-MD5 and DIGEST-MD5 authentication. The LDAP server allows
clients to bind to the server using DIGEST-MD5 (RFC 2831) and CRAM-MD5
(Challenge-Response Authentication Method - RFC 2195) authentication bind
methods. For more information, see Chapter 6, “CRAM-MD5 and DIGEST-MD5
authentication,” on page 81.

v Support for root DSE. The LDAP server supports search operations, including
subtree search, against the root of the directory tree as described in IETF RFC
2251, The Lightweight Directory Access Protocol (V3). The so-called Root DSE
can be accessed using LDAP V3 search operations. For more information, see
“Root DSE” on page 177.

v Extended group membership searching. The LDAP server supports extended
group membership searching which allows the LDAP server to find a DN that
may be a member of static and nested groups in a backend (LDBM) where the
DN does not reside. The LDAP server can find the group memberships for the
DNs in the other backends that are configured. For more information about the
extendedGroupSearching configuration file option, see
“extendedGroupSearching” in z/VM: TCP/IP Planning and Customization.

v Supported server controls. The LDAP server supports the following:
authenticateOnly
IBMModifyDNRealignDNAttributesControl
IBMModifyDNTimelimitControl
IBMSchemaReplaceByValueControl
manageDsaIT
PersistentSearch
replicateOperationalAttributes

For more information, see Appendix B, “Supported server controls,” on page 219.

v Attribute encryption. The LDAP server supports encryption of the values of
several critical attributes to prevent unauthorized access to these attribute values
in LDBM backends. The attributes that can be encrypted are as follows:

replicaCredentials
secretKey
userPassword

For more information, see “Configuring for Encryption” in z/VM: TCP/IP Planning
and Customization.

v Multiple socket ports. The LDAP server can be configured to listen for secure
and nonsecure connections from clients on one or more IPv4 or IPv6 interfaces
on a system. With the listen configuration option on the LDAP server, the
hostname or the IPv4 or IPv6 address, along with the port number, can target
one or multiple IPv4 or IPv6 interfaces on a system. For more information, see
“listen” in z/VM: TCP/IP Planning and Customization.

v Persistent search. The LDAP server provides an event notification mechanism
for applications, directories, and meta directories that need to maintain a cache
of directory information or to synchronize directories when changes are made to
an LDAP directory. Persistent search will allow these applications to be notified
when a change has occurred. For more information, see Appendix B, “Supported
server controls,” on page 219.

v ibm-entryuuid attribute. The LDAP server now generates a unique identifier for
any entry that is created or modified and does not already have a unique
identifier assigned. The unique identifier is stored in the ibm-entryuuid attribute.
The ibm-entryuuid attribute is replicated to servers that support the

Chapter 1. Introducing the LDAP server 7

ibm-entryuuid attribute. To configure the serverEtherAddr option in the LDAP
server configuration file, see “serverEtherAddr” in z/VM: TCP/IP Planning and
Customization.

v ibm-allMembers and ibm-allGroups. The LDAP server now supports the
querying of the members of static, dynamic, and nested groups in an LDBM
backend by using the ibm-allMembers operational attribute. The LDAP server
also supports the querying of the static, dynamic, and nested groups that a user
belongs to with the ibm-allGroups operational attributes.

v Plug-in support: The LDAP server can be configured with extensions called
plug-ins. The plug-ins are supplied by other products or created by you. Plug-ins
are invoked before, during, or after the LDAP server processes a client request.
For more information on configuring a plug-in, see “Configuring the LDAP Server”
in z/VM: TCP/IP Planning and Customization. For information about creating a
plug-in, see z/VM: TCP/IP Programmer’s Reference.

8 z/VM: TCP/IP LDAP Administration Guide

Chapter 2. Data model

The LDAP data model is closely aligned with the X.500 data model. In this model, a
directory service provides a hierarchically organized set of entries. Each of these
entries is represented by an object class. The object class of the entry determines
the set of attributes which are required to be present in the entry as well as the set
of attributes that can optionally appear in the entry. An attribute is represented by
an attribute type and one or more attribute values. In addition to the attribute type
and values, each attribute has an associated syntax which describes the format of
the attribute values. Examples of attribute syntaxes for LDAP directory include
directory string and binary.

To summarize, the directory is made up of entries. Each entry contains a set of
attributes. These attributes can be single or multi-valued (have one or more values
associated with them). The object class of an entry determines the set of attributes
that must exist and the set of attributes that may exist in the entry.

Every entry in the directory has a distinguished name (DN). The DN is the name
that uniquely identifies an entry in the directory. A DN is made up of attribute=value
pairs, separated by commas. For example:
cn=Ben Gray,ou=editing,o=New York Times,c=US
cn=Lucille White,ou=editing,o=New York Times,c=US
cn=Tom Brown,ou=reporting,o=New York Times,c=US

The order of the component attribute=value pairs is important. The DN contains one
component for each level of the directory hierarchy. LDAP directory DNs begin with
the most specific attribute (usually some sort of name), and continue with
progressively broader attributes, often ending with a country attribute.

Relative distinguished names
Each component of a DN is referred to as a relative distinguished name (RDN). It
identifies an entry distinctly from any other entries which have the same parent. In
the examples above, the RDN cn=Ben Gray separates the first entry from the
second entry, (with RDN cn=Lucille White). The attribute=value pair or pairs
making up the RDN for an entry must also be present as an attribute=value pair or
pairs in the entry. This is not true of the other components of the DN. When using
the LDBM backend, LDBM adds the attribute=value pairs in the RDN to the entry if
they are not already present.

RDNs can contain multiple attribute=value pairs. So-called multivalued RDNs use
two or more attribute=value pairs from the directory entry to define the name of the
entry relative to its parent. An example where this would be useful would be where
a directory hierarchy of users was being defined for a large university. This
hierarchy would be segmented by campus. A problem is encountered, however,
when it is discovered that there is more than one John Smith at the downtown
campus. The RDN cannot simply be the name of the user. What can be done,
however, is to add a unique value to the RDN, therefore, ensuring its uniqueness
across the campus. Typically universities hand out serial numbers to their students.
Coupling the student number with the person’s name is one method of solving the
problem of having a unique RDN under a parent in the directory hierarchy. The
entry’s RDN might look something like:
cn=John Smith+studentNumber=123456.

© Copyright IBM Corp. 2007, 2009 9

The plus sign (+) is used to delimit separate attribute=value pairs within an RDN.
The entry’s DN might look like:
cn=John Smith+studentNumber=123456, ou=downtown, o=Big University, c=US

Any attribute can be used to make up an RDN except:

v attributes with binary syntax, UTC time syntax, or generalized time syntax.

Note: The userPassword attribute is binary, therefore, it cannot appear in an
RDN. Time stamp attributes use one of the time syntaxes, therefore, they
cannot appear in an RDN.

v attributes that are marked NO-USER-MODIFICATION in the schema, because
these attributes cannot be added to an entry by a user.

v the aclEntry, aclPropagate, entryOwner, and ownerPropagate attributes.

Distinguished name syntax
The Distinguished Name (DN) syntax supported by this server is based on IETF
RFC 2253 LDAP (v3): UTF-8 String Representation of Distinguished Names. A
semicolon (;) character may be used to separate RDNs in a distinguished name,
although the comma (,) character is the typical notation. A plus sign (+) is used to
separate attribute=value pairs in an RDN.

White space (blank) characters may be present on either side of the comma or
semicolon. The white space characters are ignored, and the semicolon replaced
with a comma.

In addition, space characters may be present between an attribute=value pair and a
plus sign (+), between an attribute type and an equal sign (=), and between an
equal sign (=) and an attribute value. These space characters are ignored when
parsing.

A value may be surrounded by quotation marks, which are not part of the value.
Inside the quoted value, the following characters can occur without any escaping:
v A space or pound sign (#) character occurring at the beginning of the string
v A space character occurring at the end of the string
v One of the characters

– apostrophe (’)
– equal sign (=)
– plus sign (+)
– backslash (\)
– less than sign (<)
– greater than sign (>)
– semicolon (;)

Alternatively, a single character to be escaped may be prefixed by a backslash (\).
This method may be used to escape any of the characters listed above, plus the
quotation mark. Pound signs (#) and space characters that do not occur at the
beginning of a string can also be escaped, but this is not required.

This notation is designed to be convenient for common forms of name. This section
gives a few examples of distinguished names written using this notation. First is a
name containing three components:
OU=Sales+CN=J. Smith,O=Widget Inc.,C=US

This example shows a method of escaping a comma in an organization name:

10 z/VM: TCP/IP LDAP Administration Guide

CN=R. Smith,O=Big Company\, Inc.,C=US

Domain component naming
Domain component naming as specified by RFC 2247 is also supported in the
LDAP server. For example, the domain name ibm.com could be specified as an
entry in the LDAP server with the following distinguished name:
dc=ibm,dc=com

RACF-style distinguished names
If you are using SDBM (the RACF database backend of the LDAP server), the
format of the DNs is restricted in order to match the schema of the underlying
RACF data. A RACF-style DN for a user or group contains two required attributes
plus a suffix:

racfid Specifies the user ID or group ID.

profiletype
Specifies user or group.

suffix Specifies the SDBM suffix.

A RACF-style DN for a user’s connection to a group contains three required
attributes plus a suffix:

racfuserid+racfgroupid
Specifies the user and the group.

profiletype
Specifies connect.

suffix Specifies the SDBM suffix.

The suffix for SDBM may contain additional attributes. For example, if the suffix has
been specified as:
suffix cn=myRACF,c=US

in the LDAP configuration file, any RACF-style DN would end with:
cn=myRACF,c=US

Following is DN format and a sample DN for a user:
racfid=userid,profiletype=user,suffix

racfid=ID1,profiletype=user,cn=myRACF,c=US

Following is the DN format and a sample DN for a connection:
racfuserid=userid+racfgroupid=groupid,profiletype=connect,suffix

racfuserid=ID1+racfgroupid=GRP1,profiletype=connect,cn=myRACF,c=US

Chapter 2. Data model 11

12 z/VM: TCP/IP LDAP Administration Guide

Chapter 3. LDAP directory schema

The LDAP Version 3 (V3) protocol, as defined in IETF RFC 2252 Lightweight
Directory Access Protocol (v3): Attribute Syntax Definitions and IETF RFC 2256 A
Summary of the X.500(96) User Schema for use with LDAPv3, describes schema
publication and update. Schema publication provides the ability to query the active
directory schema through the use of the LDAP search function. Schema update is
the ability to change the schema while the directory server is running.

Note:

v The z/VM LDAP server implements both schema publication and update.
The schema is stored as an entry in the database and search (publication)
and modify (update) operations may be performed on this entry. The
distinguished name of the schema entry is cn=schema.

The schemaPath option in the LDAP server configuration file defines the
location where the LDAP server will save the schema entry. The default is
/var/ldap/schema. This directory should be backed up as part of the
normal system backup procedure since the loss of the schema directory
will invalidate all existing directory entries.

v Access to the schema entry is controlled by an access control list (ACL),
even if the LDAP server is in maintenance mode. All requests to access
the schema entry except those from the LDAP administrator are subject to
ACL checking. In particular for a replica server, requests from the
masterServerDN or peerServerDN are subject to access control. The
default ACL allows all users to display the schema but only the LDAP
administrator can update the schema. This ACL can be modified. See
Chapter 8, “Using access control” for more information.

Setting up the schema for LDBM - new users
The LDAP server is shipped with two predefined schema files representing schema
definitions that the user might want to load into the LDAP server schema when
using LDBM. These files are USRSCHEM LDIF and IBMSCHEM LDIF and are
located on the TCPMAINT 591 disk. The IBMSCHEM LDIF schema definitions
require that the definitions contained in USRSCHEM LDIF are loaded prior to
loading IBMSCHEM LDIF. Determine which of these schema files would be used to
represent the data to be stored in the LDBM database, or locate or create other
schema files to use.

Use the ldapmodify command to load the schema. For example, the commands to
load the USRSCHEM LDIF and IBMSCHEM LDIF schema files would be similar to:
ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f //usrschem.ldif

ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f //ibmschem.ldif

For more information about ldapmodify, see z/VM: TCP/IP User’s Guide.

Upgrading schema for LDBM
The schema files that are shipped with the z/VM LDAP server are based on
industry and product defined schemas. As such, they should not be modified since
existing products and applications use the schema elements as defined.

Occasionally, schema updates are required during the life of an LDAP release.
These updates are applied to and shipped with the USRSCHEM LDIF and

© Copyright IBM Corp. 2007, 2009 13

IBMSCHEM LDIF files found on the TCPMAINT 591 disk. When moving to a new
release you must reapply both of these files if you previously applied these schema
files. Future schema service will depend on those updates being applied to your
schema.

If you are using the USRSCHEM LDIF and IBMSCHEM LDIF schema files and
either the files are updated in the service stream or you are moving to a new
release, the LDAP Administrator should update the LDAP server schema through
the ldapmodify utility. Run the following ldapmodify commands to load the
schema:
ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f //usrschem.ldif

ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f //ibmschem.ldif

For more information about ldapmodify, see z/VM: TCP/IP User’s Guide.

Notes:

1. Check that schemaReplaceByValue off is not specified in the global section of
the LDAP server configuration file or send the
IBMSchemaReplaceByValueControl control with a value of TRUE on the
modify request. This control can be sent by specifying the -u option on the
ldapmodify utility. Refer to “Configuring the LDAP Server” in z/VM: TCP/IP
Planning and Customization for more information on the
schemaReplaceByValue configuration option and to Appendix B, “Supported
server controls” for more information on the
IBMSchemaReplaceByValueControl control.

2. When the LDAP schema is modified using the USRSCHEM LDIF and
IBMSCHEM LDIF files, each attribute and object class definition in the file
replaces the existing definition in the schema. Any changes previously made in
the schema to these attributes and object classes needs to be made again. This
includes any changes that are allowed to attributes and object classes in the
initial LDAP schema.

Schema introduction
Entries in the directory are made up of attributes which consist of an attribute type
and one or more attribute values. These are referred to as attribute=value pairs.
Every entry contains one or more objectclass=value pairs that identify what type of
information the entry contains. The object classes associated with the entry
determine the set of attributes which must or may be present in the entry.

The z/VM LDAP server has a single schema for the entire server. This schema is
stored as an entry whose distinguished name is cn=schema. Following is a portion of
the schema entry.

14 z/VM: TCP/IP LDAP Administration Guide

The objectClass values specified for the schema entry are top, subEntry,
subSchema, and ibmSubschema. This set of object classes result in the
objectClass, cn, and subtreeSpecification attributes being required for a schema
entry and the attributeTypes, objectClasses, ldapSyntaxes, matchingRules, and
IBMAttributeTypes attributes being allowed in a schema entry.

Note: The ditContentRules, ditStructureRules, nameforms, and
matchingRuleUse attributes are allowed in a schema entry, but usage of
these directives is not implemented by the z/VM LDAP server.

Every entry in the directory including the schema entry contains the
subschemaSubentry attribute. The value shown for this attribute is the DN of the
schema entry, cn=schema. Therefore, a search operation requesting the
subschemasubentry for an entry always returns:
subschemasubentry=cn=schema

Attribute types, object classes, LDAP syntaxes, and matching rules have assigned
unique numeric object identifiers. These numeric object identifiers are in dotted
decimal format, for example, 2.5.6.6. Attribute types, object classes, and matching
rules are also identified by a textual name, for example, person or names. The
numeric object identifier and the textual names may be used interchangeably when
an attribute type or object class definition specifies an object identifier. Most schema
definitions use the textual name as the object identifier for these definitions.

Note: Non-numeric object identifiers, for example myattr-oid, can be used instead
of numeric object identifiers.

The attributes that comprise a directory schema include attribute types, IBM
attribute types, object classes, LDAP syntaxes, and matching rules. There is a fixed
set of LDAP syntaxes and matching rules supported by the z/VM LDAP server.
These are listed in Table 4, Table 5, and Table 6. Each of the schema attributes are
described below:

v Attribute types

Attribute types define the characteristics of the data values stored in the
directory. Each attribute type defined in a schema must contain a unique numeric

cn=SCHEMA
subtreespecification=NULL
objectclass=TOP
objectclass=SUBSCHEMA
objectclass=SUBENTRY
objectclass=IBMSUBSCHEMA
...
attributetypes= (2.5.4.3 NAME ('cn' 'commonName') SUP name)
...
ibmattributetypes = (2.5.4.3 ACCESS-CLASS normal)
...
objectclasses = (2.5.6.0 NAME 'top' ABSTRACT MUST objectclass)
...
ldapsyntaxes = (1.3.6.1.4.1.1466.115.121.1.15 DESC 'directory string')
...
matchingrules = (2.5.13.5 NAME 'caseExactMatch' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
...

Figure 2. Sample Schema Entry

Chapter 3. LDAP directory schema 15

object identifier and optionally contain a textual name, zero or more alias names,
and a description of the attribute type. The characteristics defined for each
attribute type include the syntax, number of values, and matching rules.

The SYNTAX defines the format of the data stored for the attribute type. The
server checks the attribute values that are to be added to the directory by
comparing the values against the set of allowed characters based on the syntax.
For example, if the syntax of an attribute type is Boolean (where the acceptable
values are TRUE or FALSE) and the attribute value specified is yes, the update
will fail. The syntaxes supported by the z/VM LDAP server are shown in Table 4
and Table 5.

Matching rules may be specified for EQUALITY, ORDERING, and SUBSTR
(substring matching). The matching rule determines how comparisons between
values are done. The EQUALITY matching rule determines if two values are
equal. Examples of EQUALITY matching rules are caseIgnoreMatch,
caseExactMatch, and telephoneNumberMatch. The ORDERING matching rule
determines how two values are ordered (greaterThanOrEqual,
lessThanOrEqual). Examples of ORDERING matching rules are
caseIgnoreOrderingMatch and generalizedTimeOrderingMatch. The SUBSTR
matching rule determines if the presented value is a substring of an attribute
value from the directory. Examples of SUBSTR matching rules are
caseIgnoreSubstringsMatch and telephoneNumberSubstringsMatch.

If EQUALITY, ORDERING, or SUBSTR matching rules are not specified in the
definition of an attribute type or through the inheritance hierarchy, the z/VM LDAP
server will perform evaluations to the best of its ability, but the results may not be
as expected. The z/VM LDAP server uses the matching rules shown in the
following table based on attribute type syntax to evaluate EQUALITY,
ORDERING, and SUBSTR if those matching rules are not specified.

Table 1. Syntax and default EQUALITY, ORDERING, and SUBSTR matching rules
Syntax EQUALITY ORDERING SUBSTR

Attribute Type Description objectIdentifierFirstComponentMatch - -

Binary - - -

Boolean booleanMatch - -

Directory String caseIgnoreMatch caseIgnoreOrderingMatch caseIgnoreSubstringsMatch

DIT Content Rule
Description

objectIdentifierFirstComponentMatch - -

DIT Structure Rule
Description

integerFirstComponentMatch - -

Distinguished Name distinguishedNameMatch distinguishedNameOrderingMatch -

Generalized Time generalizedTimeMatch generalizedTimeOrderingMatch -

IA5 String caseIgnoreIA5Match caseIgnoreOrderingMatch caseIgnoreSubstringsMatch

IBM Attribute Type objectIdentifierFirstComponentMatch - -

IBM Entry UUID IBM-EntryUUIDMatch - -

Integer integerMatch - -

LDAP Syntax Description objectIdentifierFirstComponentMatch - -

Matching Rule
Description

objectIdentifierFirstComponentMatch - -

Matching Rule Use
Description

objectIdentifierFirstComponentMatch - -

Name Form Description objectIdentifierFirstComponentMatch - -

Object Class Description objectIdentifierFirstComponentMatch - -

Object Identifier objectIdentifierMatch - -

Octet String octetStringMatch - -

Substring Assertion - - -

Telephone Number telephoneNumberMatch - telephoneNumberSubstringsMatch

16 z/VM: TCP/IP LDAP Administration Guide

Table 1. Syntax and default EQUALITY, ORDERING, and SUBSTR matching rules (continued)
Syntax EQUALITY ORDERING SUBSTR

UTC Time utcTimeMatch - -

The z/VM LDAP server also verifies that the matching rules specified for
EQUALITY, ORDERING, and SUBSTR are consistent with the specified
SYNTAX. Table 2 shows acceptable values EQUALITY, ORDERING, and
SUBSTR.

Table 2. Syntax and acceptable matching rules (EQUALITY, ORDERING, and SUBSTR)
Syntax EQUALITY ORDERING SUBSTR

Attribute Type
Description

objectIdentifierFirstComponentMatch - -

Binary - - -

Boolean booleanMatch
caseIgnoreMatch
caseExactMatch

- -

Directory String caseIgnoreMatch
caseExactMatch

caseIgnoreOrderingMatch
caseExactOrderingMatch

caseIgnoreSubstringsMatch
caseExactSubstringsMatch

DIT Content Rule
Description

objectIdentifierFirstComponentMatch - -

DIT Structure Rule
Description

integerFirstComponentMatch - -

Distinguished Name distinguishedNameMatch distinguishedNameOrdering Match -

Generalized Time generalizedTimeMatch generalizedTimeOrdering Match -

IA5 caseIgnoreMatch
caseIgnoreIA5Match
caseExactMatch
caseExactIA5Match

caseIgnoreOrderingMatch

caseExactOrderingMatch

caseIgnoreSubstringsMatch

caseExactSubstringsMatch

IBM Attribute Type
Description

objectIdentifierFirstComponent Match - -

IBM Entry UUID IBM-EntryUUIDMatch - -

Integer integerMatch
integerFirstComponentMatch

- -

LDAP Syntax Description objectIdentifierFirstComponentMatch - -

Matching Rule
Description

objectIdentifierFirstComponentMatch - -

Matching Rule Use
Description

objectIdentifierFirstComponentMatch - -

Name Form Description objectIdentifierFirstComponentMatch - -

Object Class Description objectIdentifierFirstComponentMatch - -

Object Identifier objectIdentifierMatch
objectIdentifierFirstComponentMatch

- -

Octet String octetStringMatch - -

Substring Assertion - - -

Telephone Number telephoneNumberMatch - telephoneNumberSubstringsMatch

UTC Time utcTimeMatch
generalizedTimeMatch

generalizedTimeOrderingMatch -

The syntax or matching rule values may be inherited by specifying a superior
attribute type. This is done by specifying the keyword SUP, followed by the
object identifier of the superior attribute type. This is known as an attribute type
hierarchy and referred to as inheritance. A superior hierarchy may be created
with multiple levels of inheritance. In the following partial example, ePersonName
and personName would inherit their SYNTAX from name.
ePersonName SUP personName
personName SUP name
name SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

Chapter 3. LDAP directory schema 17

When the SYNTAX, EQUALITY, ORDERING, or SUBSTR values are not
specified for an attribute type, the attribute type hierarchy are used to determine
these values. The SYNTAX must be specified on the attribute type or through
inheritance.

The number of values that may be stored in each entry for an attribute type is
limited to one value if the keyword SINGLE-VALUE is specified. Otherwise, any
number of attribute values may exist in the entry.

The OBSOLETE keyword indicates that the attribute type cannot be used to add
data to existing entries or to store data in new entries. Modifications to entries
which contain data values of an attribute type which has been made obsolete will
fail unless all data values for all obsolete attribute types are removed during the
modification. Searches specifying the obsolete attribute type will return the
entries containing the attribute type. If an obsolete attribute type is referred to in
a superior hierarchy, the inherited values will continue to be resolved.

Example 1:
attributeTypes: (1.2.3.4 NAME 'obsattr1' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 OBSOLETE)
attributeTypes: (5.6.7.8 NAME 'validattr1' SUP obsattr1)

would be the same as
attributeTypes: (5.6.7.8 NAME 'validattr' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Example 2:
attributeTypes: (10.20.30.40 NAME 'obsattr2' SUP obsattr3)
attributeTypes: (50.60.70.80 NAME 'obsattr3'

EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
attributeTypes: (90.100.110.120 NAME 'validattr2' SUP obsattr2)

would be the same as
attributeTypes: (90.100.110.120 NAME 'validattr2'

EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

The USAGE keyword’s valid values are userApplications or one of three
operational values (directoryOperation, distributedOperation, or
dSAOperation). An attribute type which has an operational USAGE value is
called an operational attribute. Operational attributes are treated differently than
non-operational attributes. In particular, the value of an operational attribute type
in an entry is only returned by a search operation if the attribute type is specified
in the list of attributes to be returned. Also, operational attribute types do not
have to belong to an object class. The default for USAGE is userApplications.

The z/VM LDAP server restricts users from modifying data values specified for
an attribute type when NO-USER-MODIFICATION is specified on the definition of
the attribute type. In general, NO-USER-MODIFICATION should only be
specified for attribute types that are set by the server because they cannot be
assigned a value by the user. Attribute types which are NO-USER-
MODIFICATION can be modified during replication processing and when the
LDAP server is in maintenance mode. See Chapter 9, “Replication” for more
information.

Note: The LDAP V3 protocol also defines a COLLECTIVE key word for attribute
types. The LDAP server does not support this key word. All attribute types
are assumed to be not COLLECTIVE.

v IBM attribute types

Additional information required by IBM LDAP servers for each attribute type
defined in the schema is specified using the IBMAttributeTypes schema
attribute. The IBMAttributeTypes schema attribute is an extension of the
attributeTypes schema attribute. If the attributeTypes value is not defined, then
the corresponding IBMAttributeTypes value cannot be defined. For the z/VM

18 z/VM: TCP/IP LDAP Administration Guide

LDAP server, the additional information defined using this attribute is the
ACCESS-CLASS of the associated attribute type.

ACCESS-CLASS specifies the level of access users have to data values of this
attribute type. The levels that may be specified for user-defined attribute types
are normal, sensitive, and critical. The system and restricted keywords are
for LDAP server use and are specified for some of the attribute types controlled
by the server. See “Attribute access classes” on page 100 for the definition of
access classes.

Note: Other LDAP servers from IBM use the DBNAME and LENGTH
characteristics to specify additional information for their implementations.
These may be specified in the schema but are not used by the z/VM
LDAP server.

v Object classes

Object classes define the characteristics of individual directory entries. The object
classes listed in a directory entry determine the set of required and optional
attributes for the entry. Each object class defined in a schema must contain a
unique numeric object identifier and optionally contain a textual name, zero or
more alias names, a description of the object class, and lists of required (MUST)
or optional (MAY) attribute types.

Required and optional attribute types for an object class may be inherited by
specifying one or more superior object classes in an object class definition. This
is done by specifying the keyword SUP followed by the object identifiers of the
superior object classes. This is known as an object class hierarchy and referred
to as multiple inheritance. A superior hierarchy may be created with multiple
levels of inheritance.

Each object class is defined as one of three types: STRUCTURAL, ABSTRACT,
or AUXILIARY. The type can be specified when the object class is defined. If the
type is not specified, it defaults to STRUCTURAL.

The structural object class defines the characteristics of a directory entry. Each
entry must specify exactly one base structural object class. A base structural
object class is defined as the most subordinate object class in an object class
hierarchy. The structural object class of an entry can not be changed. Once
an entry is defined in the directory, it must be deleted and recreated to change
the structural object class.

Abstract and auxiliary object classes are used to provide common characteristics
to entries with different structural object classes. Abstract object classes are used
to derive additional object classes. Abstract object classes must be referred to in
a structural or auxiliary superior hierarchy. Auxiliary object classes are used to
extend the set of required or optional attribute types of an entry.

When using the keyword SUP to create an object class hierarchy, an auxiliary
class should only specify superior object classes that are either auxiliary or
abstract object classes. Similarly, a structural object class should only specify
superior object classes that are either structural or abstract object classes. If
these rules are not followed, the z/VM LDAP server might not be able to
determine the base structural object class of the entry, resulting in the rejection of
the entry.

An example of the relationship between structural, abstract, and auxiliary object
classes is the schema entry shown in Figure 2. The schema entry specifies top,
subEntry, subSchema, and ibmSubschema as object classes. The object
classes form the following hierarchy:

Chapter 3. LDAP directory schema 19

subEntry
(structural)

SubSchema
(auxliary)

ibmSubSchema
(auxliary)

top (abstract)

In this example, the subEntry object class is the base structural object class.

The OBSOLETE keyword indicates that the object class cannot be used to
define entries in the directory. When an object class is made obsolete, new
entries specifying the obsoleted object class cannot be added to the directory
and existing entries cannot be modified unless the obsolete object class is
removed from the entries’ object class list. When the obsolete object class is
removed from the entry, any attributes in the entry that are associated only with
that object class must also be removed. These changes must be made through
the same modify operation. If an obsolete object class is specified in a superior
hierarchy for a new entry, then attempts to add the entry to the LDAP directory
will fail.

v LDAP syntaxes

Each attribute type definition includes the LDAP syntax which applies to the
values for the attribute. The LDAP syntax defines the set of characters which are
allowed when entering data into the directory.

The z/VM LDAP server is shipped with predefined supported syntaxes. See
Table 4 and Table 5 for the list of syntaxes supported by the z/VM LDAP server.
The set of syntaxes cannot be changed, added to, or deleted by users.

v Matching rules

Matching rules allow entries to be selected from the database based on the
evaluation of the matching rule assertion. Matching rule assertions are
propositions which may evaluate to true, false, or undefined concerning the
presence of the attribute value or values in an entry.

The z/VM LDAP server is shipped with predefined supported matching rules. See
Table 6 for the list of matching rules supported by the z/VM LDAP server. The set
of matching rules cannot be changed, added to, obsoleted, or deleted by users.

Schema attribute syntax
The attributes which are used in the schema entry use specific character
representations in their values. These character representations are described in
Table 3. The terms shown in this table are used in the schema attribute definitions
in the next section.

Figure 3. Object class hierarchy example

20 z/VM: TCP/IP LDAP Administration Guide

Table 3. Character representations

Term Definition

noidlen Represented as:

numericoid{length}

where length is a numeric string representing the maximum length of
values of this attribute type.

Example:

1.3.6.1.4.1.1466.115.121.1.7{5}

Implementation note: The z/VM LDAP server allows values to be any
length, regardless of the specification of a length in the attribute type
definition. User installations that want to limit the length of values need
to handle this during data input.

numericoid A dotted decimal string.

Example:

2.5.13.72
Note: A non-numeric object identifier, for example myattr-oid, can be
used instead of a numeric object identifier.

oid A single object identifier. This may be specified either as a name or as a
numeric object identifier.

Examples:

name
2.5.4.41

oidlist A list of object identifiers specified as names or numeric object
identifiers separated by dollar signs ($) within parentheses.

Example:

(cn $ sn $ postaladdress $ 2.5.4.6)

oids Either an oid or oidlist.

qdescrs A quoted description shown as 'descr' for one and as ('descr'
'descr') for more than one. The description (descr) must have an
alphabetic character as the first character, followed by any combination
of alphabetic or numeric characters, the dash character (-), or the
semicolon character (;). Each value must be in single quotation marks
(').

If there is more than one value, they must be enclosed in parentheses.

Examples:

'x121address'
('cn' 'commonName')
'userCertificate;binary'

Note: Although the LDAP V3 protocol does not support an underscore
character (_) as a valid character in a descr, the z/VM LDAP server
allows the use of an underscore character to facilitate data migration.
This use should be minimized whenever possible and may not be
supported by other servers.

Chapter 3. LDAP directory schema 21

Table 3. Character representations (continued)

Term Definition

qdstring A quoted descriptive string shown as 'dstring'. The descriptive string
(dstring) is composed of one or more UTF-8 characters.

Example:

'This is an example of a quoted descriptive string.'

LDAP schema attributes
The five attributes used to define an LDAP schema are discussed below. For these
schema attributes, the numericoid must be the first item in the definition. All other
keywords and values may be in any order.

LDAP syntaxes
The set of syntaxes which are supported by the z/VM LDAP server cannot be
modified, added to, or deleted by users. The descriptive material included here is
for information only.

The format of the LDAP syntaxes attribute in a dynamic schema is:
ldapSyntaxes: (numericoid [DESC qdstring])

numericoid
The unique, assigned numeric object identifier.

DESC qdstring
Text description of the LDAP syntax

Note: LDAP syntaxes do not have a textual name. They are identified only by the
numeric object identifier.

Following is an example of the definition of an LDAP syntax:
ldapSyntaxes: (1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean')

The LDAP syntaxes supported by the z/VM LDAP server fall into two categories.
The first set, as shown in Table 4, would be used when defining attribute types that
are used for directory data.

Table 4. Supported LDAP syntaxes - general use

Numeric object identifier Description Valid values

1.3.6.1.4.1.1466.115.121.1.5 Binary Binary data

1.3.6.1.4.1.1466.115.121.1.7 Boolean TRUE, FALSE

1.3.6.1.4.1.1466.115.121.1.15 Directory String UTF-8 characters

1.3.6.1.4.1.1466.115.121.1.12 Distinguished Name Sequence of attribute type and value
pairs

22 z/VM: TCP/IP LDAP Administration Guide

Table 4. Supported LDAP syntaxes - general use (continued)

Numeric object identifier Description Valid values

1.3.6.1.4.1.1466.115.121.1.24
Note: The effective time zone for the
LDAP server is assumed when
calculating GMT from local time.

Generalized Time yyyymmddhhmmss.ffffff (local time)

yyyymmddhhmmss.ffffffZ (GMT)

yyyymmddhhmmss.ffffff-hhmm (Time
zone west)

yyyymmddhhmmss.ffffff+hhmm (Time
zone east)

The seconds (ss) and microseconds
(ffffff) can be omitted and will default
to 0.

1.3.6.1.4.1.1466.115.121.1.26 IA5 String IA5 characters (commonly known as
7-bit ASCII)

1.3.6.1.4.1.1466.115.121.1.27 Integer +/- 62 digit integer

1.3.6.1.4.1.1466.115.121.1.38 Object Identifier Name or numeric object identifier

1.3.6.1.4.1.1466.115.121.1.40 Octet String Octet data

1.3.6.1.4.1.1466.115.121.1.50 Telephone Number printable string (alphabetic, decimal,
″, (,), +, ,, -, ., /, :, ?, and space)

1.3.6.1.4.1.1466.115.121.1.53 UTC Time See Generalized Time above for
details

Values defined using the binary and octet string syntaxes are transferred in binary
and do not consist of UTF-8 characters.

The second set of syntaxes defined by the z/VM LDAP server are used in the
definition of the LDAP schema. These would not typically be used in user schema
attribute type definitions. They are listed here for reference.

Table 5. Supported LDAP syntaxes - server use

Numeric object identifier Description

1.3.6.1.4.1.1466.115.121.1.3 Attribute Type Description

1.3.6.1.4.1.1466.115.121.1.16 DIT Content Rule Description

1.3.6.1.4.1.1466.115.121.1.17 DIT Structure Rule Description

1.3.18.0.2.8.1 IBM Attribute Type Description

1.3.18.0.2.8.3 IBM Entry UUID Description

1.3.6.1.4.1.1466.115.121.1.54 LDAP Syntax Description

1.3.6.1.4.1.1466.115.121.1.30 Matching Rule Description

1.3.6.1.4.1.1466.115.121.1.31 Matching Rule Use Description

1.3.6.1.4.1.1466.115.121.1.35 Name Form Description

1.3.6.1.4.1.1466.115.121.1.37 Object Class Description

1.3.6.1.4.1.1466.115.121.1.58 Substring Assertion

Matching rules
The set of matching rules which are supported by the z/VM LDAP server cannot be
modified, added to, obsoleted, or deleted by users. The descriptive material
included here is for information only.

Chapter 3. LDAP directory schema 23

The format of the matching rules attribute in a dynamic schema is:
matchingRules: (numericoid [NAME qdescrs] [DESC qdstring] [OBSOLETE] SYNTAX numericoid)

numericoid
The unique, assigned numeric object identifier.

NAME qdescrs
The name by which this matching rule is known.

DESC qdstring
Text description of the matching rule.

OBSOLETE
Indicates that the matching rule is obsolete.

SYNTAX numericoid
Specifies the numeric object identifier of the syntax for this matching rule.

Following is an example of the definition of a matching rule:
matchingRules: (2.5.13.5 NAME 'caseExactMatch' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

The matching rules supported by the z/VM LDAP server is a fixed set as listed in
the following table.

Table 6. Supported matching rules

Name Numeric object identifier Assertion syntax

booleanMatch 2.5.13.13 Boolean. Both values are either
TRUE or FALSE. Case is ignored.

caseExactIA5Match 1.3.6.1.4.1.1466.109.114.1 IA5 String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case must be the same.

caseExactMatch 2.5.13.5 Directory String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case must be the same.

caseExactOrderingMatch 2.5.13.6 Directory String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case must be the same.
Collating sequence is based on the
UTF-8 representation.

caseExactSubstringsMatch 2.5.13.7 Directory String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case must be the same.

caseIgnoreIA5Match 1.3.6.1.4.1.1466.109.114.2 IA5 String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case is ignored.

caseIgnoreMatch 2.5.13.2 Directory String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case is ignored.

24 z/VM: TCP/IP LDAP Administration Guide

Table 6. Supported matching rules (continued)

Name Numeric object identifier Assertion syntax

caseIgnoreOrderingMatch 2.5.13.3 Directory String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case is ignored. Collating
sequence is based on the UTF-8
representation.

caseIgnoreSubstringsMatch 2.5.13.4 Directory String. Leading and trailing
whitespace is ignored. Embedded
whitespace is replaced by a single
blank. Case is ignored.

distinguishedNameMatch 2.5.13.1 Distinguished Name. Each name
must have the same number of RDN
components and each attribute within
each RDN must match using the
EQUALITY rule for that attribute type.

distinguishedNameOrderingMatch 1.3.18.0.2.4.405 Distinguished Name. The normalized
string representation of each name is
compared. The collating sequence is
based on the UTF-8 representation.

generalizedTimeMatch 2.5.13.27 Generalized Time. The value will be
normalized as
yyyymmddhhmmss.ffffffZ.

generalizedTimeOrderingMatch 2.5.13.28 Generalized Time. The value will be
normalized as
yyyymmddhhmmss.ffffffZ.

IBM-EntryUUIDMatch 1.3.18.0.2.22.2 IBM Entry UUID. Hyphens are
removed and a case-insensitive
string comparison is performed.

integerFirstComponentMatch 2.5.13.29 Integer.

integerMatch 2.5.13.14 Integer.

objectIdentifierMatch 2.5.13.0 Object Identifier. The value will be
normalized as an attribute descriptor.

objectIdentifierFirstComponentMatch 2.5.13.30 Object Identifier. The value will be
normalized as an attribute descriptor.

octetStringMatch 2.5.13.17 Octet String. Both values must
contain the same number of octets
and each octet must have the same
value.

telephoneNumberMatch 2.5.13.20 Telephone Number

telephoneNumberSubstringsMatch 2.5.13.21 Telephone Number. The value will be
normalized using the
telephoneNumberMatch rule.

utcTimeMatch 2.5.13.25 UTC Time. The value will be
normalized as
yyyymmddhhmmss.ffffffZ.

Notes on matching rules:

1. An undefined attribute type within a distinguished name uses the directory string
matching rules.

Chapter 3. LDAP directory schema 25

2. The aclEntry and entryOwner attribute types use the distinguished name
matching rules. The assertion value is just the DN portion of the attribute value.

3. Attribute types with a binary transfer syntax cannot be used in a search filter but
can be used in a compare operation.

4. The ibm-allGroups and ibm-allMembers attribute types cannot be used in a
search filter. These are read-only operational attributes and will result in a
FALSE match status when used in a search filter.

5. The LDBM backend ignores the ORDERING and SUBSTR matching rules and
always uses the EQUALITY matching rule when processing a search filter.

Attribute types
The format of the attribute types attribute in a dynamic schema is:
attributeTypes: (numericoid [NAME qdescrs] [DESC qdstring] [OBSOLETE] [SUP oid]
[EQUALITY oid] [ORDERING oid] [SUBSTR oid] [SYNTAX noidlen] [SINGLE-VALUE]
[NO-USER-MODIFICATION] [USAGE attributeUsage])

numericoid
The unique, assigned numeric object identifier.

NAME qdescrs
The name and alias names by which this attribute type is known. This is
also known as the object identifier. The first name in the list is used as the
base name and the other names are referred to as alias names. It is
suggested the shortest name be listed first. If a name is not specified, the
numeric object identifier is used to refer to the attribute type.

DESC qdstring
Text description of the attribute type.

OBSOLETE
Indicates that the attribute type is obsolete.

SUP oid
Specifies the superior attribute type. When a superior attribute type is
defined, the EQUALITY, ORDERING, SUBSTR, and SYNTAX values may
be inherited from the superior attribute type. The referenced superior
attribute type must also be defined in the schema. When the SYNTAX,
EQUALITY, ORDERING, or SUBSTR values are not specified for an
attribute type, the attribute type hierarchy is used to determine these
values. The SYNTAX must be specified on the attribute type or through
inheritance.

EQUALITY oid
Specifies the object identifier of the matching rule which is used to
determine the equality of values.

ORDERING oid
Specifies the object identifier of the matching rule which is used to
determine the order of values.

SUBSTR oid
Specifies the object identifier of the matching rule which is used to
determine substring matches of values.

SYNTAX noidlen
The syntax defines the format of the data stored for this attribute type. It is
specified using the numeric object identifier of the LDAP syntax and,
optionally, the maximum length of data stored for this attribute type.

26 z/VM: TCP/IP LDAP Administration Guide

Implementation note: The z/VM LDAP server allows values to be any
length, regardless of the specification of a length in the attribute type
definition. User installations that want to manage the lengths of values need
to handle this when values are put into the directory.

SINGLE-VALUE
Limits entries to only one value for this attribute type.

NO-USER-MODIFICATION
When specified, users may not modify values of this attribute type.

USAGE attributeUsage
Specify userApplications for attributeUsage. If USAGE is not specified, the
default is userApplications.

The directoryOperation, distributedOperation, and DSAOperation
keywords are used to create operational attributes. Operational attributes
are treated differently than non-operational attributes. In particular, the value
of an operational attribute type in an entry is only returned by a search
operation if the attribute type is specified in the list of attributes to be
returned. Also, operational attribute types do not have to belong to an
object class.

Following are examples of the definition of attribute types:
attributeTypes: (2.5.4.6 NAME 'c' SUP name SINGLE-VALUE)
attributeTypes: (2.5.4.41 NAME 'name' EQUALITY caseIgnoreMatch SUBSTR

caseIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})

IBM attribute types
The format of the IBM attribute types attribute in a dynamic schema is:
IBMAttributeTypes: (numericoid [ACCESS-CLASS IBMAccessClass])

numericoid
The unique, assigned numeric object identifier of the associated attribute
type.

ACCESS-CLASS ibmAccessClass
The level of sensitivity of the data values for this attribute type. The
acceptable values are normal, sensitive, and critical. See Attribute access
classes for the definition of these values.

The IBMAttributeTypes schema element is an extension of the attributeTypes
schema element. If the attributeTypes value is not defined, then the corresponding
IBMAttributeTypes value cannot be defined.

Some schema elements are shipped with ACCESS-CLASS set to restricted or
system. These values are used by the LDAP server. Other IBM LDAP servers may
also specify DBNAME, LENGTH, and other keywords and values. These keywords
are not used by the z/VM LDAP server and do not need to be specified when
creating schemas. If they are specified in a schema used by the z/VM LDAP server,
they are ignored.

Following is an example of the definition of an IBM attribute type:
IBMAttributeTypes: (2.5.4.6 ACCESS-CLASS normal)

Object classes
The format of the object classes attribute in a dynamic schema is:
objectClasses: (numericoid [NAME qdescrs] [DESC qdstring]

[OBSOLETE] [SUP oids] [ABSTRACT|STRUCTURAL|AUXILIARY] [MUST oids] [MAY oids])

Chapter 3. LDAP directory schema 27

numericoid
The unique, assigned numeric object identifier.

NAME qdescrs
The name and alias names by which this object class is known. This is also
known as the object identifier. The first name in the list is used as the base
name. If name is not specified, the numeric object identifier is used to refer
to the object class.

DESC qdstring
Text description of the object class.

OBSOLETE
Indicates that the object class is obsolete.

SUP oids
List of one or more superior object classes. When a superior object class is
defined, entries specifying the object class must adhere to the superset of
MUST and MAY values. The supersets of MUST and MAY values include
all MUST and MAY values specified in the object class definition and all
MUST and MAY values specified in the object class’s superior hierarchy.
When an attribute type is specified as a MUST in an object class in the
hierarchy and a MAY in another object class in the hierarchy, the attribute
type is treated as a MUST. Referenced superior object classes must be
defined in the schema.

ABSTRACT | STRUCTURAL | AUXILIARY
Indicates the type of object class. STRUCTURAL is the default.

MUST oids
List of one or more mandatory attribute types. Attribute types which are
mandatory must be specified when adding or modifying a directory entry.

MAY oids
List of one or more optional attribute types. Attribute types which are
optional may be specified when adding or modifying a directory entry.

The extensibleObject object class is an AUXILIARY object class which allows an
entry to optionally hold any attribute type. The extensibleObject object class is
supported by the z/VM LDAP server. This allows any attribute type that is known by
the schema to be specified in an entry which includes extensibleObject in its list of
object classes.

The top object class is an abstract object class used as a superclass of all
structural object classes. For each structural object class, top must appear in the
SUP list of this object class or of an object class in the superior hierarchy of this
object class.

Following is an example of the definition of an object class:
objectClasses: (2.5.6.0 NAME 'top' ABSTRACT MUST objectclass)
objectClasses: (2.5.6.6 NAME 'person' SUP top STRUCTURAL MUST (cn $ sn)
MAY (userpassword $ telephonenumber $ seealso $ description))

objectClasses: (5.6.7.8 NAME 'company' SUP top MUST (department $ telephoneNumber) MAY (postalAddress $ street))
objectClasses: (1.2.3.4 NAME 'companyPerson' SUP (company $ person))

Defining new schema elements
You can define new schema elements for use by applications that you develop to
use the directory. You can add new object classes and attribute types to the
schema. To define a new object class or attribute type, create an LDIF file
containing the new schema information, and perform an LDAP modify operation on

28 z/VM: TCP/IP LDAP Administration Guide

the schema entry. Object classes and attribute types must be defined using the
formats described in the previous section, and must include unique numeric object
identifiers and names. Ensuring that the numeric object identifier and names are
unique is essential to the correct operation of the directory when using your newly
defined schema elements.

Numeric object identifiers (OIDs) are strings of numbers, separated by periods. OID
“ranges” or “arcs” are allocated by naming authorities. If you are going to define
new schema elements, you should obtain an “OID arc” from a naming authority.
One such location to get an “OID arc” assigned is managed by Internet Assigned
Numbers Authority (IANA) and, can be found at:
http://www.iana.org

Select the “Application Forms” link and then the “Private Enterprise Number” link to
apply for a Private Enterprise number.

Once you have obtained an “OID arc” you can begin assigning OIDs to object
classes and attribute types that you define.

For the example below, assume that we have been assigned OID arc
1.3.18.0.2.1000.100. (Note: Do not use this OID arc for defining your own schema
elements. This arc is assigned to IBM for its use.) The following example adds a
new object class that refers to two new attribute types. As you can see, the object
class and attribute types can be added to the schema using a single LDAP modify
operation. The changes to the schema are represented in LDIF mode input below:
dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.18.0.2.1000.100.4.1 NAME 'YourCompanyDeptNo'

DESC 'A users department number.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 EQUALITY caseIgnoreMatch
USAGE userApplications
)

ibmattributetypes: (1.3.18.0.2.1000.100.4.1 ACCESS-CLASS normal)
attributetypes: (1.3.18.0.2.1000.100.4.2 NAME 'YourCompanyEmployeeID'

DESC 'A user employee ID.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 EQUALITY caseIgnoreMatch
USAGE userApplications
)

ibmattributetypes: (1.3.18.0.2.1000.100.4.2 ACCESS-CLASS sensitive)
-
add: objectclasses
objectclasses: (1.3.18.0.2.1000.100.6.1 NAME 'YourCompanyPerson'

DESC 'Attached to inetOrgPerson to add more attributes.'
SUP top
AUXILIARY
MAY (YourCompanyDeptNo $ YourCompanyEmployeeID)
)

-

This short description has described how to update the schema with new schema
elements. Defining new schema elements is a complex undertaking and requires a
thorough understanding of schema.

Chapter 3. LDAP directory schema 29

http://www.iana.org

Updating the schema

Attention
Updating the schema, if not done properly, can result in being unable to
access data. Read this section thoroughly to avoid this situation.

When the z/VM LDAP server is first started, the server supplies an initial schema.
This initial schema is sufficient for usage of the SDBM and GDBM backends, but
will need to be updated for usage of LDBM. The schema files shipped with the
LDAP server, USRSCHEM LDIF and IBMSCHEM LDIF, might be sufficient for your
usage of LDBM. (For more information on adding these files to the schema, see
“Setting up the schema for LDBM - new users” on page 13.) If they are not
sufficient, you can change the schema as needed. The schema entry is required
and cannot be deleted. When deleting an attribute type or object class definition,
you need to provide just the object identifier enclosed in parentheses. Any
additional fields that are specified are checked for proper syntax but are not used.

The operations supported include adding, modifying, or deleting any object class,
attribute type, or IBM attribute type that is not part of the initial schema definition
required by the LDAP server. Changes to the initial schema are very restricted. See
Changing the initial schema for more information. The modifications (additions,
changes, and deletions) specified by the LDAP modify function are applied to the
schema entry. The resulting schema entry becomes the active schema and is used
by all backends to verify that directory changes adhere to it.

Updates to the schema must be performed such that the schema fully resolves.
This includes:

v All attribute types referred to in object classes must exist in the schema.

v All superior attribute types or object classes must exist.

v Only the syntaxes and matching rules supported by the schema may be specified
in attribute type definitions.

v All attribute types referred to in IBM attribute type definitions must also be
defined as attribute types.

v All structural object classes must include the top object class in their object class
hierarchy.

Modifications to the schema are rejected if they would possibly make existing
entries no longer valid. If there is an entry in an LDBM backend that is using an
attribute or object class:

v The attribute or object class cannot be deleted. Instead, ″delete″ the schema
element by modifying it to mark it as OBSOLETE rather than deleting its
definition from the schema entry. Therefore, no new entries can be created using
the schema element and the existing entries which do use the schema element
are still accessible. An existing entry that uses the OBSOLETE schema element
must be modified to use only non-OBSOLETE schema elements during the next
modification of the entry in order for the modification to succeed.

v The attribute or object class cannot be modified in a way that could affect the
data in the entry. For example, the syntax of an attribute cannot be changed
when that attribute is in use. You must modify the entries first so they do not use
the object class or attribute, then change the schema.

The following fields in an attribute type definition are the only fields that can be
modified if the attribute type is in use by an entry:

30 z/VM: TCP/IP LDAP Administration Guide

DESC
OBSOLETE
SINGLE-VALUE (can be removed but not added)
NO-USER-MODIFICATION
USAGE

The following fields in an IBM attribute type definition can be modified:

ACCESS-CLASS

The following fields in an object class definition can be modified when the object
class is in use by an entry:

DESC
OBSOLETE
MUST (can only move an attribute to MAY)
MAY (can only add an attribute)

Changing the initial schema
The initial schema contains the ldapSyntaxes, matchingRules, attributeTypes,
IBMAttributeTypes, and objectClasses needed by the LDAP server. See
Appendix A, “Initial LDAP server schema” for the contents of the initial schema.

The syntaxes, matching rules, attribute types, and IBM attribute types in the initial
schema cannot be deleted or modified. The object classes in the initial schema
cannot be deleted or modified, with the following exceptions:

1. groupOfNames

2. groupOfUniqueNames

These object classes allow the following fields to be modified:
DESC
MUST (can only move an attribute to MAY if the object class is in use by an entry)
MAY (can only add an attribute if the object class is in use by an entry)

The MUST and MAY lists can be modified in any way if no directory entries are
using this object class.

Any part of a schema modification that attempts to add LDAP syntaxes or matching
rules to the schema or to modify the initial schema except as described above is
ignored, with no message issued to indicate this. The rest of the schema
modification is performed and the result of those changes is returned to the client.

Replacing individual schema values
It is often necessary to apply an updated schema file to an existing schema.
Optimally, this would replace changed values in the existing schema with their
updated values from the file and add new values from the file to the existing
schema, leaving all other values in the existing schema unchanged. However, this
is not the way the RFC 2251 definition for such a modify with replace operation
works: the RFC requires that ALL the existing values in the schema be replaced by
the values specified in the schema file. Therefore, the schema file would have to
contain all the unchanged values from the schema in addition to the updated and
new values so that no unchanged existing values are lost.

Chapter 3. LDAP directory schema 31

To address this problem, the LDAP server supports two different behaviors when
using a modify with replace operation on the schema entry:

1. Standard RFC behavior, in which all the existing values for an attribute are
replaced by the ones specified in the modify operation. In order for the
modification to succeed, the replacement values must include definitions for all
schema definitions that are in use by existing directory entries and the
replacement values must conform to the rules described above about what
fields can be modified in an active schema entry.

2. Schema-replace-by-value behavior, in which each replace value in the modify
operation either replaces the existing value (if one exists) in the schema or is
added to the schema (if an existing value does not exist). All other values in the
schema remain as they are. A replace value replaces a schema value if the
schema value and replace value have the same numeric object identifier
(NOID). Otherwise, the replace value is considered a new value and is added to
the existing values in the schema.

In all cases, the values of the attribute that are in the initial LDAP server schema
cannot be deleted and can only be modified in limited ways as described in
Changing the initial schema.

The behavior used by the LDAP server is selected in one of two ways:

1. Specify the schemaReplaceByValue option in the global section of the LDAP
server configuration file to set the behavior for all modify with replace operations
of the schema. Specifying on activates the schema-replace-by-value behavior;
off activates the standard RFC behavior. Refer to “Configuring the LDAP
Server” in z/VM: TCP/IP Planning and Customization for more information.

2. Specify the IBMschemaReplaceByValueControl control on the modify with
replace operation to set the behavior for just that specific modify operation,
overriding the schemaReplaceByValue configuration option. Specifying TRUE
in the control activates the schema-replace-by-value behavior; FALSE activates
the standard RFC behavior. Refer to Appendix B, “Supported server controls” for
more information.

If neither the schemaReplaceByValue configuration option nor the
IBMschemaReplaceByValueControl control is specified, the default behavior is
schema-replace-by-value.

Example: assume that the objectclasses attribute for cn=schema contains the
following values:
objectclasses: (1.130.255 NAME 'oldObjectclass1' DESC 'old description 1' ...)
objectclasses: (1.130.256 NAME 'oldObjectclass2' DESC 'old description 2' ...)
objectclasses: (1.130.257 NAME 'oldObjectclass3' DESC 'old description 3' ...)

We would like to replace 'oldObjectclass1' and add a value for
'newObjectclass4'.

This is the update file for the modify operation:
dn: cn=schema
changetype: modify
replace: objectclasses
objectclasses: (1.130.255 NAME 'newObjectClass1' DESC 'new description 1' ...)
objectclasses: (1.3.5.9 NAME 'newObjectClass4' DESC 'description 4' ...)

After the modify operation with schema-replace-by-value behavior, the objectclasses
attribute in the schema would have the following values:

32 z/VM: TCP/IP LDAP Administration Guide

objectclasses: (1.130.255 NAME 'newObjectClass1' DESC 'new description 1' ...)
objectclasses: (1.130.256 NAME 'oldObjectclass2' DESC 'old description 2' ...)
objectclasses: (1.130.257 NAME 'oldObjectclass3' DESC 'old description 3' ...)
objectclasses: (1.3.5.9 NAME 'newObjectClass4' DESC 'description 4' ...)

If the modify operation with traditional RFC behavior is performed instead, the
objectclasses attribute in the schema would end up with the following values:
objectclasses: (1.130.255 NAME 'newObjectClass1' DESC 'new description 1' ...)
objectclasses: (1.3.5.9 NAME 'newObjectClass4' DESC 'description 4' ...)

IBM attribute types are extensions to the attribute type definition. The IBM attribute
type is deleted when the corresponding attribute type is deleted. IBM attribute types
are always replaced by value even when schemaReplaceByValue off is specified
in the LDAP server configuration file. This ensures that access class protection isn’t
inadvertently removed from an existing attribute type.

Updating a numeric object identifier (NOID)
It may become necessary to update the numeric object identifier (NOID) of an
attribute type or object class in the schema. This NOID change can be
accomplished by a special modify operation. The modify operation must consist
only of a value to delete followed by a value to add. The value to delete must
specify the current NOID of the attribute type or object class whose NOID is to be
changed; the value to add must specify the new NOID for the attribute type or
object class, along with all the other parts of the attribute type or object class
definition. For an attribute type, the NAME, SUP, EQUALITY, ORDERING,
SUBSTR, and SYNTAX must be identical in the existing definition and the value to
add. SINGLE-VALUE can be removed but not added. For an object class, NAME,
SUP, MUST, MAY, and type (ABSTRACT, STRUCTURAL, or AUXILIARY) must be
identical in the existing definition and the value to add. The entire attribute type or
object class definition is replaced by the contents of the add. Note that the object
identifier assigned to an attribute type or object class cannot be changed if there
are any directory entries using the attribute type or object class. Also, the object
identifier of an attribute type or object class in the initial LDAP schema cannot be
changed.

Example: suppose we want to change the NOID of the xyz attribute type from
1.3.5.7 to 2.4.6.8. The update file for the modify operation to accomplish this
would look like:
cn=schema
-attributetypes=(1.3.5.7 NAME 'xyz' DESC 'xyz attribute added for application abc' \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 USAGE userApplications)
+attributetypes=(2.4.6.8 NAME 'xyz' DESC 'xyz attribute added for application abc' \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 USAGE userApplications)

Changing a NOID should not need to be done as part of normal LDAP server
operations. It is intended to be used as an error recovery device for when an
incorrect NOID has been added to the schema.

Analyzing schema errors
Following is some information about the possible cause of some schema errors that
may be encountered when updating schema:

v For enhanced readability, type:value pairs in LDIF files may be split across
multiple lines. The indicator to LDIF that the subsequent lines are continuations is
that the first character on the subsequent line is a space. This character is
ignored by parsers and it is assumed that the next character immediately follows
the previous line. Therefore, if a space is needed between the last value on one

Chapter 3. LDAP directory schema 33

line and the first value on the subsequent line, a second space needs to exist on
the subsequent LDIF line. Various reason codes related to unrecognized values
may be issued.

v Only limited changes are allowed to the initial schema, as described in Changing
the initial schema. All other changes to the initial schema are ignored by the
LDAP server with no error returned.

v The IBM attribute type schema attribute is an extension to the associated
attribute type in the schema. If the schema update contains an IBM attribute type
value for which an attribute type value is not defined, the schema update will fail.
For example,
IBMAttributeTypes: (1.2.3.4 ACCESS-CLASS normal)

cannot be specified unless
attributeTypes: (1.2.3.4 NAME 'sample' ...)

is also defined.

v While the UTC Time syntax is supported, usage of the Generalized Time syntax
is recommended. For UTC Time syntax, year values between 70 and 99 assume
1970 to 1999 and values between 00 and 69 assume 2000 to 2069.

v When searching attribute type values of GMT or UTC Time syntax, use GMT
syntax in the search filter rather than local time. All time values are stored in the
data store as GMT times.

Retrieving the schema
The following sections describe how you can display the schema entry and also find
the subschemaSubentry DN.

Displaying the schema entry
The following command shows how to search for the schema entry. Note that the
scope must be base in the search request to display the schema.
ldapsearch -h ldaphost -p ldapport -s base -b "cn=schema" "objectclass=subschema"

Immediately after the server is started for the first time, this command produces the
results shown in Appendix A, “Initial LDAP server schema.” After the schema has
been updated by the administrator, the search results will show the full schema as
the union of the initial schema and the added schema elements.

The search results will contain these attributes:
cn=SCHEMA
cn=schema
subtreespecification=NULL
objectclass=TOP
objectclass=SUBSCHEMA
objectclass=SUBENTRY
objectclass=IBMSUBSCHEMA
...
attributetypes = (2.5.4.3 NAME ('cn' 'commonName') SUP name)
...
ibmattributetypes = (2.5.4.3 ACCESS-CLASS normal)
...
objectclasses = (2.5.6.0 NAME 'top' ABSTRACT MUST objectclass)
...
ldapsyntaxes = (1.3.6.1.4.1.1466.115.121.1.15 DESC 'directory string')
...
matchingrules = (2.5.13.5 NAME 'caseExactMatch' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
...

34 z/VM: TCP/IP LDAP Administration Guide

Finding the subschemaSubentry DN
The subschemaSubentry attribute in each directory entry contains the DN of the
LDAP server schema entry. To find the value of the subschemaSubentry attribute,
specify subschemaSubentry as an attribute to be returned on an LDAP search of
the entry.
ldapsearch -h ldaphost -p ldapport -s base -b "o=Acme Company, c=UK" "objectclass=*"

subschemasubentry

o=Acme Company, c=UK
subschemasubentry=cn=schema

Chapter 3. LDAP directory schema 35

36 z/VM: TCP/IP LDAP Administration Guide

Chapter 4. Modify DN operations

The Modify DN Operation allows a client to change the leftmost (least significant)
component of the name of an entry in the directory, or to move a subtree of entries
to a new location in the directory. This topic explains the function of the Modify DN
operation and the options supported to influence the scope and duration of the
operation. In addition, it instructs on the techniques necessary to achieve certain
forms of directory renames and movement, and it advises on issues which may
result in unintentional or unwanted results.

In LDAP, modify DN operations are only supported in the LDBM (file-based)
backend.

Modify DN operation syntax
The z/VM implementation of the Modify DN operation supports all required and
optional parameters described for the operation in RFC 2251. Specifically, these
parameters are required:

v entryDN: This is the Distinguished Name (DN) of the entry whose name will be
changed. This entry may or may not have subordinate entries. This parameter
may not be a zero-length string.

v newRdn: The Relative Distinguished Name (RDN) that will form the leftmost
component of the new name of the entry. This parameter may not be a
zero-length string. If the intent of the Modify DN operation is to move the target
entry to a new superior without changing its RDN, the old RDN value must be
supplied in the newRdn parameter. The attributes and values in the newRdn
parameter are added to the entry if they are not already present in the entry.

v deleteoldrdn: A boolean parameter that controls whether the old RDN attribute
values are to be retained attributes of the entry or whether they will be deleted
from the entry.

The following parameter to the Modify DN operation is optional:

v newSuperior: The Distinguished Name (DN) of the entry which will become the
immediate superior of the renamed entry (identified by the entryDN parameter).
If this parameter is present, it may consist of a zero-length string or a
non-zero-length string. See Modify DN operations related to suffix DNs for more
information on the use of a zero-length string for this parameter. A zero-length
string value for this parameter (″″) will signify that the new superior entry is the
root DN.

This operation also supports optional values, or controls, to influence the behavior
of the operation. Two controls are supported (see Appendix B, “Supported server
controls”):

v IBMModifyDNTimelimitControl: This control causes the Modify DN operation to
be abandoned if its duration exceeds the time limit represented by the control
value expressed in seconds. No changes are made if the operation is
abandoned. This control is honored even if it is set by the admin DN for the
server. When this control is present, it will not be propagated to the replica
servers. (See Modify DN operations and replication for more information about
replication of Modify DN operations.)

v IBMModifyDNRealignDNAttributesControl: This control causes the server to
search for all attributes whose attribute type is based on a DN syntax
(designated by OID 1.3.6.1.4.1.1466.115.121.1.12) and whose values match any

© Copyright IBM Corp. 2007, 2009 37

of the old DN values being renamed as part of the Modify DN operation, and to
modify the old DN values to reflect the corresponding renamed DN attribute
values. This includes modifications to two other attribute types which have
constructed DN-type attribute values (those whose attribute syntax is not
distinguished name but which may be used to store DN values). They are
aclEntry and ownership entryOwner attributes. Updates to constructed DN
types will be limited to these two attributes defined by the LDAP Server. No
changes will be made to any user constructed types.

This control is an all-or-none operation in which the server attempts to realign all
appropriately-matched DN attribute values in the LDBM backend. Users cannot
limit the scope of values which should be realigned. If a failure arises during the
realignment operation, it realigns none of the values, and the Modify DN
operation fails. No changes are made if the operation is abandoned. It should be
noted that even if the control is designated as non-critical, the server will still try
to honor the intent of the control and if this attempt fails, the entire Modify DN
operation will fail.

When IBMModifyDNRealignDNAttributesControl is present on a request to a
master server on which replication of Modify DN operations is enabled, it will be
propagated to the replica servers. (See Modify DN operations and replication for
more information about replication of Modify DN operations.)

A few simple examples of the use of the Modify DN operation follow. Each request
will be expressed in the format of the ModifyDNRequest defined in RFC 2251, as
well as in the corresponding invocation command for the z/VM client utility program
ldapmodrdn. Refer to the z/VM: TCP/IP User’s Guide for more information on the
ldapmodrdn utility.

Example 1: Simple Modify DN of leaf node
ModifyDNRequest ::= {
entry cn=Kevin Heard, o=Athletics, o=Human Resources, o=Deltawing, c=AU
newrdn cn=Kevin T. Heard
deleteoldrdn TRUE
}

ldapmodrdn -h ldaphost -p ldapport -D binddn -w passwd -r "cn=Kevin Heard,
o=Athletics, o=Human Resources, o=Deltawing, c=AU" "cn=Kevin T. Heard"

38 z/VM: TCP/IP LDAP Administration Guide

Note: The -r parameter specifies that the old RDN attribute value (cn=Kevin Heard)
will be deleted from the target entry after this operation.

Example 2: Simple Modify DN of non-leaf node
ModifyDNRequest ::= {
entry o=Athletics, o=Human Resources, o=Deltawing, c=AU
newrdn ou=College Athletics Dept.,
deleteoldrdn FALSE
}

ldapmodrdn -h ldaphost -p ldapport -D binddn -w passwd "o=Athletics,
o=Human Resources, o=Deltawing, c=AU" "ou=College Athletics Dept."

c=Au

o=Deltawing, c=Au

o=Human Resources, o=Deltawing, c=Au ou=Vision On Demand, o=Deltawing, c=Au

o=Athletics, o=Human Resources,
o=Deltawing, c=Au

ou=Sport,ou=Vision On Demand,
o=Deltawing, c=Au

cn=Kevin Heard, o=Athletics,
o=Human Resources,o=Deltawing,
c=Au

cn=Margaret Cresswell, ou=Sport,
ou=Vision On Demand, o=Deltawing,
c=Au

Figure 4. Before Modify DN operation

c=Au

o=Deltawing, c=Au

o=Human Resources, O=Deltawing, C=Au ou=Vision On Demand, o=Deltawing, c=Au

o=Athletics, o=Human Resources,
o=Deltawing, c=Au

ou=Sport,ou=Vision On Demand,
o=Deltawing, c=Au

cn=Kevin T. Heard,o=Athletics,
o=Human Resources, o=Deltawing,
c=Au

cn=Margaret Cresswell, ou=Sport,
ou=Vision On Demand,o=Deltawing,
c=Au

Figure 5. After Modify DN operation

Chapter 4. Modify DN operations 39

Note: The absence of the -r parameter specifies that the old RDN attribute value
(o=Athletics) will be preserved in the target entry after this operation.

Example 3: Modify DN of non-leaf node with relocation (newSuperior)
ModifyDNRequest ::= {
entry o=Athletics, o=Human Resources, o=Deltawing, c=AU
newrdn o=Adult Athletics
deleteoldrdn FALSE,
newSuperior ou=Sport, ou=Vision On Demand, o=Deltawing, o=AU

}

ldapmodrdn -h ldaphost -p ldapport -D binddn -w passwd -s "ou=Sport, ou=Vision On
Demand, o=Deltawing, c=AU" "o=Athletics,o=Human Resources, o=Deltawing, c=AU"
"o=Adult Athletics"

c=Au

o=Deltawing, c=Au

o=Human Resources, o=Deltawing, c=Au

o=Athletics, o=Human Resources,
o=Deltawing, o=Au

cn=Kevin Heard, o=Athletics,
o=Human Resources, o=Deltawing,
c=Au

cn=Margaret Cresswell,
o=Athletics, o=Human Resources,
o=Deltawing, c=Au

Figure 6. Before Modify DN operation

c=Au

o=Deltawing, c=Au

o=Human Resources, o=Deltawing, c=Au

ou=College Athletics Dept., o=Human Resources,
o=Deltawing, c=Au

cn=Kevin Heard, ou=College Athletics Dept.,
o=Human Resources, o=Deltawing,
c=Au

cn=Margaret Cresswell,
ou=College Athletics Dept.,
o=Human Resources,
o=Deltawing, c=Au

Figure 7. After Modify DN operation

40 z/VM: TCP/IP LDAP Administration Guide

Note: The absence of the -r parameter specifies that the old RDN attribute value
(o=Athletics) will be preserved in the target entry after this operation. The
target entry and descendants in its subtree will be relocated in the directory
hierarchy.

Considerations in the use of Modify DN operations
As this operation has the potential to significantly change directory data and how it
can be accessed, it is important that the user fully understand the data before using
the Modify DN operation. Specifically, the user needs to know that:

o=Deltawing,c=Au

o=Human Resources, o=Deltawing, c=Au ou=Vision On Demand, o=Deltawing,c=Au

o=Athletics, o=Human Resources,
o=Deltawing, c=Au

ou=Sport,ou=Vision On Demand,
o=Deltawing, c=Au

cn=Kevin Heard, o=Athletics,
o=Human Resources, o=Deltawing,
c=Au

cn=Margaret Cresswell,
o=Athletics, o=Human Resources,
o=Deltawing, c=Au

c=Au

Figure 8. Before Modify DN operation

o=Deltawing, c=Au

o=Human Resources, o=Deltawing, c=Au ou=Vision On Demand, o=Deltawing, c=Au

ou=Sport,ou=Vision On Demand,
o=Deltawing, c=Au

cn=Kevin Heard, o=Adult Athletics,
ou=Sport, ou=Vision On Demand,

o=Deltawing, c=Au

cn=Margaret Cresswell,
o=Adult Athletics, ou=Sport,
ou=Vision On Demand,
o=Deltawing, C=Au

c=Au

o=Adult Athletics, ou=Sport, ou=Vision On Demand,
o=Deltawing, c=Au

Figure 9. After Modify DN operation

Chapter 4. Modify DN operations 41

v The ability of this operation to move directory subtrees has the potential for
affecting many entries in the directory in a single operation.

v Certain options may result in modification of additional directory entries which are
outside the scope of the directory subtrees being moved. This topic will explain
and give examples of how that can occur.

v Because the changes performed to the directory as a result of the operation are
committed as a single transaction (or reversed if an error occurs), it may result in
a long-running transaction, which may reduce concurrency of other LDAP
operations targeted for the same directory entries. See Concurrency
considerations between Modify DN operations and other LDAP operations for
more information.

v The scope of the changes may result in unanticipated effects in the directory and
may affect user access to these entries. See Access control changes for more
information.

v There are limitations to which directory entries are eligible for the Modify DN
operation. See Eligibility of entries for rename for more information.

v In case the directory needs to be returned to a state prior to a Modify DN
operation, the directory should be backed up by using the ds2ldif utility program.
For more information about the ds2ldif utility program, see z/VM: TCP/IP
Planning and Customization. In addition to backing up the directory contents,
activity logging should be enabled before nontrivial changes are made to the
directory.

v There are considerations if the data to be modified by this operation is being
replicated. See Modify DN operations and replication for more information.

Eligibility of entries for rename
Entries in the directory which are targeted to be renamed in a single Modify DN
operation are subject to these constraints:

1. All entries to be renamed must be located in the same LDBM backend targeted
by the Modify DN operation. The Modify DN operation with newSuperior option
will move subtree entries within the same LDBM backend, and will not permit
movement of subtree entries from one backend to another. The entry to be
renamed must exist in the backend, and the new DN for the entry must not
already exist in the backend.

2. Referral entries may be renamed as part of a Modify DN operation. If a referral
entry is renamed as part of a Modify DN operation, its corresponding entry in
the referral server must be manually updated to reflect the name changes; no
automatic updates are propagated to those backends from the target backend.
Referrals which exist in other directory servers which refer to any of the entries
whose DNs were modified in the local directory by a Modify DN operation will
need to be manually updated to reflect the changes; no automatic updates are
propagated to those servers from the local one.

3. The LDAP server schema entry can not be renamed.

4. Entries renamed by a Modify DN operation must conform to the LDAP server
schema. As such, the RDN attribute type must be consistent with the schema
rules for the object classes of the entry: a Modify DN operation fails if the
attribute type of newRdn is not in the MUST or MAY list for the entry’s object
classes.

5. If a new superior entry is specified, it must be in the same backend as the entry
to be renamed but may be under a different suffix managed by that backend. If
the IBMModifyDNRealignDNAttributesControl is specified, only entries within
the same backend as the renamed entry will be processed.

42 z/VM: TCP/IP LDAP Administration Guide

6. When IBMModifyDNRealignDNAttributesControl is present on a Modify DN
request, the operation looks for occurrences of each renamed DN (this can be
multiple DNs if renaming a subtree) in certain attributes within all the entries in
the backend and replaces each renamed DN with its new DN. The affected
attributes are:

a. Any attribute whose syntax is DN syntax (OID
1.3.6.1.4.1.1466.115.121.1.12).

b. The aclEntry and entryOwner attributes (these contain DNs in a structured
format).

7. If newRdn is specified on a Modify DN operation, each attribute in the newRdn
value is added to the entry when it is moved. If a newRdn attribute already has
a different value in the entry and the attribute is defined as SINGLE-VALUE in
the schema, the Modify DN operation fails. For example, suppose an entry with
DN of dept=AAA,ou=mydivision,o=MyCompany,c=us is to be renamed with the
newRdn sector=northeast and that the entry already contains the
SINGLE-VALUE attribute sector with a value of northwest. This rename fails
because it attempts to add a second value (northeast) to the sector attribute.

If the newRdn attribute is contained in the current RDN, then the deleteoldrdn
parameter can be added to the Modify DN operation to allow it to succeed. In
this case, the current attribute value is removed so that the attribute only
contains the one value from newRdn in the renamed entry. For example,
suppose an entry with DN of
sector=northwest,ou=mydivision,o=MyCompany,c=us is to be renamed with the
newRdn sector=northeast and deleteoldrdn is specified on the Modify DN
operation. This rename succeeds because northwest is replaced by northeast
as the single value of the sector attribute in the renamed entry.

8. Entries may be renamed only if all access control requirements are satisfied for
the bound user, as determined by the effective ACL and ownership permissions
for those entries and attributes. See Access control and ownership for detailed
explanation and examples of this effect.

9. Alias entries (entries containing the aliasedObjectName attribute and either the
alias or aliasObject object class) can be renamed as part of a modify DN
operation as long as this does not result in an aliasedObjectName value that is
a DN equal to the DN of the renamed alias entry.

Concurrency considerations between Modify DN operations and other
LDAP operations

The ability of the Modify DN operation to rename non-leaf nodes in the directory
(which causes all entries which are hierarchical subordinates of the target entry to
be renamed) and the ability to move directory subtrees have the potential for
affecting many entries in the directory in a single operation. Use of
IBMModifyDNRealignDNAttributesControl with this operation may further result in
modification of additional directory entries which are outside the scope of the
directory subtrees being renamed or moved.

Changes to all entries affected by the operation are committed at the same time.
While modified entries are awaiting the transaction commit point, database locks
are held which prevent other concurrent operations from sharing and modifying the
data. If many entries undergo modification with this operation, it may result in a
long-running transaction which has potential for reducing concurrency of other
operations targeted for the same directory entries.

Chapter 4. Modify DN operations 43

Although the LDAP server is capable of processing concurrent LDAP operations
targeted at a given LDBM backend while the Modify DN operation is in progress,
the extent to which such concurrency is possible will depend on what data in the
directory may be needed and locked by the competing operations.

Access control and ownership
For all entries being renamed, the caller must have w(rite) permissions for the
attribute values that will have to change in all affected entries. In addition, if the
newSuperior parameter is present on the Modify DN request, the caller must have
permissions of object:a on the newSuperior entry and object:d on the target entry
at the top of the subtree of entries being moved. If the caller lacks one or more of
these permissions, the operation is denied. No access control checking is done
against any of the target entry’s subordinates even though their DN is changed. It
should be noted that if the caller is an effective owner of any of the entries being
renamed, the permissions are automatically satisfied for those entries.

In addition, if the IBMModifyDNRealignDNAttributesControl accompanies a
Modify DN request, then the bound DN must have w(rite) permission to all of the
attributes that are changed as a result of realignment of the DN values.

Example:

Assume our sample directory contains the following entry which will be the target of
a Modify DN operation, and which contains explicit ACL information:
dn: o=Athletics, o=Human Resources, ou=Delta Home Media Ltd., o=Deltawing, c=AU
aclEntry: access-id: cn=Mark Crawford, ou=Human Resources, ou=Delta Home Media Ltd.,
o=Deltawing,c=AU:normal:rswc:sensitive:rsc:object:d

(other attributes not shown)

The directory also contains an entry with DN ou=Production, ou=Vision On
Demand,o=Deltawing, c=AU which will be the new Superior of the Modify DN
operation. This entry inherits the following ACL information (propagated from a
superior entry):
aclEntry: access-id: dn: cn=Mark Crawford, ou=Human Resources, ou=Delta Home Media
Ltd., o=Deltawing, c=AU:normal:rwsc:sensitive:rsc:object:a

In addition, there are several entries containing attributes of DN syntax. For this
example, assume that these attribute types and their respective attribute access
classes are as follows:

attribute: reportingOrganization access-class: sensitive
attribute: workingOrganization access-class: normal

The LDIF format representation of the entries containing reportingOrganization or
workingOrganization attributes are:
dn: cn=Lisa Fare, ou=Human Resources, ou=Delta Home Media Ltd., o=Deltawing, c=AU
cn: Lisa Fare
objectclass: organizationalPerson
objectclass: person
objectclass: TOP
aclEntry: access-id: cn=Mark Crawford, ou=Human Resources, ou=Delta Home
Media Ltd., o=Deltawing,c=AU:normal:rsc:sensitive:rs
sn: Fare
title: Occupational Health and Safety Administrator
telephonenumber: (07) 635 1432
manager: cn=John Gardner, ou=Human Resources Group, ou=Deltawing InfoSystems,

44 z/VM: TCP/IP LDAP Administration Guide

o=Deltawing, c=AU
secretary: cn=Ian Campbell, o=Deltawing, c=AU
reportingOrganization: o=Athletics, o=Human Resources, ou=Delta Home Media Ltd.,
o=Deltawing, c=AU

dn: cn=Laurie Wood, ou=Human Resources Group, ou=Deltawing Automotive Ltd., o=Deltawing, c=AU
cn: Laurie Wood
objectclass: organizationalPerson
objectclass: person
objectclass: TOP
aclEntry: access-id: cn=Mark Crawford, ou=Human Resources, ou=Delta Home
Media Ltd., o=Deltawing,c=AU:normal:rswc:sensitive:rsw
sn: Wood
telephonenumber: (03) 9335 2114
title: Pay Officer
workingOrganization: o=Athletics, o=Human Resources, ou=Delta Home Media Ltd.,
o=Deltawing, c=AU

Relocating an entry
User "cn=Mark Crawford, ou=Human Resources, ou=Delta Home Media Ltd.,
o=Deltawing,c=AU" submits the following Modify DN operation request to the server
to relocate the target entry:
ldapmodrdn -h ldaphost -p ldapport -D "cn=Mark Crawford, ou=Human Resources, ou=Delta Home
Media Ltd., o=Deltawing,c=AU" -w passwd -s "ou=Production, ou=Vision On Demand,
o=Deltawing, c=AU" "o=Athletics, o=Human Resources, ou=Delta Home Media Ltd., o=Deltawing,
c=AU" "o=Athletics Division"

The -s parameter specifying newSuperior is present on this operation request, so in
addition to the access permissions needed for all Modify DN operations (w on
affected attributes), the user also needs object:d on the target entry and object:a
on the newSuperior entry. The bound user is in the aclEntry for the target entry as
well as in the aclEntry for the newSuperior entry, and has all required access
permissions (can write attributes and delete the target entry, and can add objects
under the newSuperior entry), so the operation is permitted.

Relocating an entry with DN realignment requested
If the same user submits a Modify DN operation request to the server to relocate
the same target entry under the same newSuperior entry, but with the addition of
the control requesting realignment of DN attribute values (-a parameter):
ldapmodrdn -h ldaphost -p ldappart -D "cn=Mark Crawford, ou=Human Resources,
ou=Delta Home Media Ltd., o=Deltawing,c=AU" -w passwd -a -s "ou=Production, ou=Vision On Demand,
o=Deltawing, c=AU" "o=Athletics, o=Human Resources, ou=Delta Home Media Ltd., o=Deltawing, c=AU"
"o=Athletics Division"

In addition to the permissions required on the previous example, this operation
requires additional permissions to be checked on entries containing values which
qualify for realignment. The DN being modified ("o=Athletics, o=Human Resources,
ou=Delta Home Media Ltd., o=Deltawing, c=AU") is found in DN-syntax attributes
of two entries: The entry with DN "cn=Laurie Wood, ou=Human Resources Group,
ou=Deltawing Automotive Ltd., o=Deltawing, c=AU" contains this value in the
workingOrganization attribute, and the entry with DN "cn=Lisa Fare, ou=Human
Resources, ou=Delta Home Media Ltd., o=Deltawing, c=AU" contains this value in
the reportingOrganization attribute.

The bound user is in the aclEntry for "cn=Laurie Wood, ou=Human Resources Group,
ou=Deltawing Automotive Ltd., o=Deltawing, c=AU". The workingOrganization
attribute is in the access-class of normal, and the bound user is granted w access
to this class of attributes, so the realignment of the DN value would be permitted in
this entry.

Chapter 4. Modify DN operations 45

The bound user is also in the aclEntry for "cn=Lisa Fare, ou=Human Resources,
ou=Delta Home Media Ltd., o=Deltawing, c=AU". The reportingOrganization
attribute is in the access-class of sensitive, and the bound user is granted only rs
permissions on sensitive attributes in the entry, so the realignment of this value
would be denied. Even though the bound user had adequate permissions to
perform the relocation of the target entry and had adequate permissions to perform
realignment of the DN value in one of the two entries containing a matching DN, the
operation would fail because the bound user does not have the necessary
permissions on everything needed to complete the operation.

Access control changes
If a Modify DN operation is accompanied by the newSuperior parameter, changes in
effective ACLs and in effective ownership of the relocated entries may result.
Regardless of the effective ACLs which applied to the moved subtree in its old
location, the moved subtree inherits any propagating ACLs applying to the
newSuperior entry. As a consequence, entries to which a user had access before
the request may no longer be accessible by that user, and entries to which access
was denied for a given user before the request is accessible by that user.

Explicit ACLs in the entry or subtree override propagating ACLs. All explicit ACLs
which were in the moved subtree at its original location move along with the entries.

When renaming a DN, it is possible that ACLs and entryOwners containing the
renamed DN will be modified. Therefore, prior to such a move or rename users
should carefully consider how ownership and accessibility to entries protected by
these attributes may change after the move, and what ACL and ownership changes
may be desired, if any.

The following is an example of how a Modify DN operation might affect access
controls:
ModifyDNRequest ::= {
entry o=Athletics, o=Human Resources, o=Deltawing, c=AU
newrdn o=Adult Athletics
deleteoldrdn FALSE,
newSuperior ou=Sport, ou=Vision On Demand, o=Deltawing,c=AU

}

ldapmodrdn -h ldaphost -p ldapport -D binddn -w passwd -s "ou=Sport,
ou=Vision On Demand, o=Deltawing, c=AU" "o=Athletics,o=Human Resources,
o=Deltawing, c=AU" "o=Adult Athletics"

46 z/VM: TCP/IP LDAP Administration Guide

Assume that the entry with DN o=Human Resources, o=Deltawing, c=AU has an
explicit propagating ACL containing the following aclEntry:
aclEntry: access-id: cn=Mark Edmondson, ou=Vision On Demand, ou=Delta Home Media Ltd.,
o=Deltawing,c=au:normal:rwcs:sensitive:rwcs:critical:rws:object:d

Also, assume that the entry with DN ou=Sport, ou=Vision On Demand,
o=Deltawing, c=AU has an explicit propagating ACL containing the following
aclEntry:
aclEntry: access-id: cn=Mark Edmondson, ou=Vision On Demand, ou=Delta Home Media Ltd.,
o=Deltawing,c=au:normal:rws:sensitive:r:critical:r:object:a

o=Deltawing,c=Au

o=Human Resources, o=Deltawing, c=Au ou=Vision On Demand, o=Deltawing,c=Au

o=Athletics, o=Human Resources,
o=Deltawing, c=Au

ou=Sport,ou=Vision On Demand,
o=Deltawing, c=Au

cn=Kevin Heard, o=Athletics,
o=Human Resources, o=Deltawing,
c=Au

cn=Margaret Cresswell,
o=Athletics, o=Human Resources,
o=Deltawing, c=Au

c=Au

Figure 10. Before Modify Dn operation

o=Deltawing, c=Au

o=Human Resources, o=Deltawing, c=Au ou=Vision On Demand, o=Deltawing, c=Au

ou=Sport,ou=Vision On Demand,
o=Deltawing, c=Au

cn=Kevin Heard, o=Adult Athletics,
ou=Sport, ou=Vision On Demand,

o=Deltawing, c=Au

cn=Margaret Cresswell,
o=Adult Athletics, ou=Sport,
ou=Vision On Demand,
o=Deltawing, C=Au

c=Au

o=Adult Athletics, ou=Sport, ou=Vision On Demand,
o=Deltawing, c=Au

Figure 11. After Modify DN operation

Chapter 4. Modify DN operations 47

If the user bound as DN cn=Mark Edmondson, ou=Vision On Demand, ou=Delta Home
Media Ltd., o=Deltawing,c=AU performs the example Modify DN operation, there
are at least two consequences which should be noted:

v While this DN previously had rwcs permissions on sensitive attributes in the
entry o=Athletics, o=Human Resources, o=Deltawing, c=AU and rws
permissions on critical attributes in the same entry, this DN has only r access on
both sensitive and critical attributes in the entry after the relocation. It might be
expected that a given DN will have the same accessibility to specific entries and
data in the directory after a Modify DN operation as it had to those entries and
data before the operation, but this example demonstrates that such an
expectation is not valid.

v If, after completion of the Modify DN operation, the bound user decides that they
wish to return the moved entry (and its subordinates) back to their original
location in the directory hierarchy, this will not be possible with the access
controls currently in place. The bound DN has only object:d permission on the
old superior node ("o=Human Resources, o=Deltawing, c=AU") where object:a is
needed to effect the move of an entry or subtree under the superior node, and
the bound DN has only object:a permission on the moved entry ("o=Adult
Athletics, ou=Sport, ou=Vision On Demand, O=Deltawing, c=AU") where
object:d is needed to move the entry. Therefore, while it may be expected that a
given DN can reverse a Modify DN operation under all circumstances, this
example demonstrates that such an expectation is not valid.

Ownership changes
When the newSuperior parameter accompanies the Modify DN request, any entries
in a relocated subtree which had explicit owners prior to the relocation will preserve
that explicit ownership after the relocation has been performed. Any entries in the
relocated subtree which inherited ownership prior to relocation will continue to
inherit ownership following relocation. If the owning entry prior to relocation was a
node superior to the relocated entry, the owning entry will be the new superior entry.
If the owning entry was an entry within the relocated subtree, the owning entry is
preserved following the relocation.

Any entries in the relocated subtree which propagated ownership to subordinates
prior to relocation continue to propagate ownership to subordinates after the
relocation.

Refer to the example in Access control changes.

Assume that the entry with DN o=Human Resources, o=Deltawing, c=AU has an
explicit propagating owner of cn=Mark Crawford, ou=Human Resources, ou=Delta
Home Media Ltd.,o=Deltawing,c=AU.

Also, assume that the entry with DN ou=Sport, ou=Vision On Demand,
o=Deltawing, c=AU has an explicit propagating owner of cn=Neville McAuliffe,
ou=Human Resources Group, ou=Deltawing Infosystems, o=Deltawing, c=AU.

Before the Modify DN operation, the effective owner of the renamed entry is
cn=Mark Crawford, ou=Human Resources, ou=Delta Home Media Ltd.,
o=Deltawing,c=AU; after completion of the operation, the effective owner of the
renamed entry is now cn=Neville McAuliffe, ou=Human Resources Group,
ou=Deltawing Infosystems, o=Deltawing,c=AU. Therefore, the act of relocating an
entry may change the effective owner of that entry and of its subordinates.

48 z/VM: TCP/IP LDAP Administration Guide

Modify DN operations related to suffix DNs
The Modify DN operation may be used to modify the DNs of any and all entries in
an LDBM backend. In addition to renaming leaf entries (directory entries with no
subordinate entries) and mid-hierarchy entries (directory entries which have both
superior entries and subordinate entries), suffix entries may also be renamed. Suffix
entries may be renamed to become non-suffix entries and suffix entries may be
renamed such that they continue to be suffix entries. In addition, non-suffix entries
may be renamed to become suffix entries. This section provides example scenarios
for rename operations which involve suffix entries. It summarizes constraints which
have been adopted for the LDAP directory implementation which are not defined in
the protocol behavior prescribed by RFC 2251 for the Modify DN operation.
Examples are provided on how various renaming scenarios may be accomplished,
and factors to be considered when performing these operations are discussed.

Scenario constraints
Several constraints will apply which are not defined by RFC 2251 in the description
of the protocol behavior:

1. If an entry being renamed will become (or remain) a suffix, the new DN must be
designated in the server’s configuration file as a suffix for the backend,
otherwise the operation will not be permitted.

2. The newRdn parameter of the Modify DN request must contain a non-null value,
otherwise the operation request will be treated as an error.

3. If the newSuperior parameter is present, it may contain a zero-length string
signifying that the new entry does not have a superior entry, therefore is a suffix
entry.

In the directory hierarchy diagrams which follow, a circle outlined with a dashed line
represents a component of a suffix DN. Circles containing gray fill represent DNs
for which an entry exists in the directory.

Example scenarios
The following are example scenarios:

1. Rename a suffix RDN with no accompanying newSuperior, and the new DN
remains a suffix after the rename is completed.

For example:

Suffixes defined in the server configuration file:
suffix: ou=End_GPL, o=MyCompany, c=US
suffix: ou=Endicott, o=MyCompany, c=US

Rename operation is to rename suffix entry
ou=End_GPL, o=MyCompany, c=US
to suffix entry
ou=Endicott, o=MyCompany, c=US

The following figure shows an example of this operation:

Chapter 4. Modify DN operations 49

The new DN must be already designated as a suffix for this backend, otherwise
this operation will fail.

The operation is performed the same as a rename of any other RDN in the
directory

a. Send Modify DN operation request with
target=ou=End_GPL, o=MyCompany, c=US
newRdn=ou=Endicott

This results in renaming ou=End_GPL, o=MyCompany, c=US to ou=Endicott,
o=MyCompany, c=US and in renaming subordinate entries accordingly.

2. Rename of suffix DN with an accompanying newSuperior, and the new DN
remains a suffix after the rename is completed. For example:

Suffix defined in the server configuration file:
suffix: ou=Endicott, o=MyCompany, c=us

Rename operation is to rename suffix entry
ou=Endicott, o=MyCompany, c=us

to suffix entry
o=MyCompany, c=us

The following figure shows an example of this operation:

c=us

o=MyCompany,c=us

ou=End_GPL,o=MyCompany, c=us

suffix: ou=End_GPL, o=MyCompany, c=us

suffix ou=Endicott, o=MyCompany, c=us

ou=Endicott,o=MyCompany, c=us

ou=s390_sw,ou=End_GPL,o=MyCompany, c=us

ou=s390_sw, ou=Endicott,o=MyCompany,c=us

cn=Li,ou=s390_sw,ou=End_GPL,o=MyCompany, c=us

cn=Li,ou=s390_sw,ou=Endicott,o=MyCompany, c=us

Figure 12. Suffix rename with no new superior

50 z/VM: TCP/IP LDAP Administration Guide

This scenario, which involves renaming an existing suffix to an overlapping new
suffix, must be performed in several steps, since the product does not permit
designation in the server configuration file of overlapping suffixes. The definition
of overlapping suffixes is when two suffixes with differing numbers of naming
components are equal to the extent of the shorter of the two suffixes. For
example, ou=Endicott, o=MyCompany, c=US and o=MyCompany,c=US are
considered to be overlapping suffixes, while ou=Endicott, o=MyCompany, c=US
and ou=Raleigh, o=MyCompany, c=US are not considered to be overlapping
suffixes.

This rename can be accomplished by having a temporary suffix pre-defined for
the backend (for example, o=OurTemporarySuffix), renaming the target entry to
become the temporary suffix, stopping the server and deleting the suffix
ou=Endicott, o=MyCompany, c=us and adding the suffix o=MyCompany, c=us, and
restarting the server. The temporary suffix would later be deleted from the list of
suffixes for the backend.

a. Send a Modify DN operation request with
target= ou=Endicott, o=MyCompany, c=us
newRdn= o=OurTemporarySuffix
newSuperior= "" (present in request with zero-length string)

This results in renaming ou=Endicott, o=MyCompany, c=us to
o=OurTemporarySuffix. Note that the server treats newRdn as an error if it
contains a zero-length string, but zero-length strings are permitted in the
newSuperior argument to signify that the superior entry is the root DN.

b. Stop server, remove suffix ou=Endicott, o=MyCompany, c=us from the server
configuration file, add suffix o=MyCompany, c=us, and restart server.

This results in adding the desired target suffix without a resulting conflict
from overlapping suffixes.

c. Send a Modify DN operation request with
target= o=OurTemporarySuffix
newRdn= o=MyCompany
newSuperior= c=us

This step results in renaming the temporary suffix o=OurTemporarySuffix to
the desired suffix o=MyCompany, c=us, thereby accomplishing the rename
from ou=Endicott, o=MyCompany, c=us to o=MyCompany, c=us. In the
process, subordinate entries would be renamed accordingly.

c=us

o=MyCompany,
c=us

ou=Endicott,
o=MyCompany, c=us

suffix: ou=Endicott, o=MyCompany, c=us

o=MyCompany, c=us

ou=s390_sw,ou=Endicott,
o=MyCompany, c=us

ou=s390_sw, o=MyCompany,
c=us

cn=Li,ou=s390_sw,ou=Endicott
o=MyCompany, c=us

cn=Li,ou=s390_sw,
o=MyCompany, c=us

Figure 13. Suffix rename with new superior

Chapter 4. Modify DN operations 51

3. This example shows the renaming of a suffix to another overlapping suffix
higher in the directory hierarchy. A similar scenario could also be performed
involving the rename of a suffix to another overlapping suffix, where the new
name is a suffix lower in the directory hierarchy. For example:

Suffix defined in the server configuration file suffix:
ou=Endicott, o=MyCompany, c=us

Rename operation is to rename suffix entry:
ou=Endicott, o=MyCompany, c=us

to suffix entry:
div=S390, ou=Endicott, o=MyCompany, c=us

The following figure shows an example of this operation:

This rename can be accomplished by having a temporary suffix pre-defined for
this backend in the server configuration file (for example,
o=OurTemporarySuffix), renaming the target entry to become the temporary
suffix, stopping the server and deleting the suffix ou=Endicott, o=MyCompany,
c=us and adding the suffix div=S390, ou=Endicott, o=MyCompany, c=us, and
restarting the server. The temporary suffix would later be deleted from the list of
suffixes for the backend. This scenario would be done as follows:

a. Send a Modify DN operation request with
target= ou=Endicott, o=MyCompany, c=us
newRdn= o=OurTemporarySuffix
newSuperior= "" (present in request with zero-length string)

b. Stop server, remove suffix ou=Endicott, o=MyCompany, c=us, add suffix
div=S390, ou=Endicott, o=MyCompany, c=us, and restart server.

c. Send a Modify DN operation request with
target= o=OurTemporarySuffix
newRdn= div=S390
newSuperior= ou=Endicott, o=MyCompany, c=us

c=us

o=MyCompany,
c=us

ou=Endicott,
o=MyCompany, c=usou=Endicott,

o=MyCompany, c=us

suffix: ou=Endicott, o=MyCompany, c=us

div=S390,
ou=Endicott,

o=MyCompany,c=us
ou=s390_sw,ou=Endicott,

o=MyCompany, c=us

ou=s390_sw, div=S390,
ou=Endicott, o=MyCompany,

c=us
cn=Li,ou=s390_sw,ou=Endicott,

o=MyCompany, c=us

cn=Li,ou=s390_sw, div=S390,
ou=Endicott, o=MyCompany,

c=us

Figure 14. Overlapping suffix rename A

52 z/VM: TCP/IP LDAP Administration Guide

At this point, it should be noted that if these operational scenarios are to be
replicated from a master server to one or more replica servers, there is a
procedure which must be followed to permit this.

a. Stop the replica server(s), add the temporary suffix (o=OurTemporarySuffix
in our examples), restart the replica server(s).

b. On the master server, perform the previous Steps 3a and 3b from the
examples above. This will result in the intermediate rename to be performed
on the master server and the results to be propagated to the replica
server(s).

c. Stop the replica server(s), delete the original suffix (ou=Endicott,
o=MyCompany, c=us in both examples above), add the new suffix
(o=MyCompany, c=us in the first example above, div=S390, ou=Endicott,
o=MyCompany, c=us in the second example above), and restart the replica
server(s).

d. On the master server, perform the previous Step 3c from the examples
above. This will result in the rename of entries to the final destination on the
master server and in the results being propagated to the replica server(s).

4. Rename of suffix DN (some component other than RDN), and the new DN
remains a suffix after the rename is completed. For example:

Suffixes defined in the server configuration file:
suffix: ou=Endicott, o=MyCompany, c=us
suffix: ou=Endicott, o=MyCompany_ny, c=us

Rename operation is to rename suffix entry:
ou=Endicott, o=MyCompany, c=us

to suffix entry ou=Endicott, o=MyCompany_ny, c=us

The following figure shows an example of this operation:

The new DN must be already designated as a suffix for this backend, otherwise
this operation will fail. The operation is performed the same as a rename of any
other DN in the directory. The product will permit the rename to occur in one

c=us

o=MyCompany,
c=us

o=MyCompany_ny,
c=us

ou=Endicott,
o=MyCompany, c=us

suffix: ou=Endicott, o=MyCompany, c=us

suffix: ou=Endicott, o=MyCompany_ny, c=us

ou=Endicott,o=MyCompany_ny,
c=us

ou=s390_sw,ou=Endicott,
o=MyCompany, c=us ou=s390_sw, ou=Endicott,o=MyCompany_ny,

c=us

cn=Li,ou=s390_sw,ou=Endicott,
o=MyCompany, c=us cn=Li,ou=s390_sw,ou=Endicott,o=MyCompany_ny,

c=us

Figure 15. Overlapping suffix rename B

Chapter 4. Modify DN operations 53

step, even if an entry for newSuperior does not already exist, since the
newly-named entry will become a suffix entry.

a. Send a Modify DN operation request with
target= ou=Endicott, o=MyCompany, c=us
newRdn= ou=Endicott
newSuperior= o=MyCompany_ny, c=us

This results in renaming the DN from ou=Endicott, o=MyCompany, c=us to
u=Endicott, o=MyCompany_ny, c=us and in renaming subordinate entries
accordingly.

5. Rename of suffix DN (including some component other than RDN), with an
accompanying newSuperior, but the new DN is no longer a suffix. For example:

Suffixes defined in the server configuration file:
suffix: ou=End, o=MyCompany, c=us
suffix: ou=End, ou=MyCompany_na, o=MyCompany, c=us

Rename operation is to rename suffix entry ou=End, o=MyCompany, c=us
to non-suffix entry ou=GPL, ou=End, ou=MyCompany_na, o=MyCompany, c=us

The following figure shows an example of this operation:

The newSuperior entry must already exist before this operation will be
permitted.

a. Send a Modify DN operation request with
target= ou=End, o=MyCompany, c=us
newRdn= ou=GPL
newSuperior= ou=End, ou=MyCompany_na, o=MyCompany,c=us

c=us

o=MyCompany,
c=us

o=MyCompany_na,
o=MyCompany

c=us

ou=End,
o=MyCompany, c=us

suffix: ou=End, o=MyCompany, c=us

suffix: ou=End, ou=MyCompany_na, o=MyCompany, c=us

ou=End, o=MyCompany_na,
o=MyCompany, c=us

ou=s390_sw,ou=End,
o=MyCompany, c=us

o=GPL, ou=End,
ou=MyCompany_na,
o=MyCompany, c=us

o=s390_sw, ou=GPL, ou=End,
ou=MyCompany_na, o=MyCompany,

c=us

cn=Li,ou=s390_sw,ou=Endicott,
o=MyCompany, c=us

cn=Li,ou=s390_sw,ou=GPL, ou=End,
ou=MyCompany_na,o=MyCompany, c=us

Figure 16. Suffix rename to non-suffix entry

54 z/VM: TCP/IP LDAP Administration Guide

This results in renaming ou=End, o=MyCompany, c=us to ou=GPL, ou=End,
ou=MyCompany_na, o=MyCompany, c=us and in renaming subordinate entries
accordingly.

6. Rename of a non-suffix DN (including some component other than RDN), with
an accompanying newSuperior, and the new DN is now a suffix. For example:

Suffixes defined in the server configuration file:
suffix: ou=End, o=MyCompany, c=us
suffix: o=Lotus, c=us

Rename operation is to rename non-suffix
div=Lotus, ou=End, o=MyCompany, c=us

to suffix o=Lotus, c=us

The following figure shows an example of this operation:
The new DN must be already designated as a suffix for this backend, otherwise

this operation will fail.

a. Send a Modify DN operation request with
target= div=Lotus, ou=Endicott, o=MyCompany, c=us
newRdn= o=Lotus
newSuperior= c=us

This step results in renaming div=Lotus, ou=Endicott, o=MyCompany, c=us
to o=Lotus, c=us and in renaming subordinate entries accordingly.

Modify DN operations and replication
Modify DN operations may be classified into two categories:

1. Simple Modify DN operations are those which rename a leaf node, and which
are not accompanied by the newSuperior parameter or the
IBMModifyDNRealignDNAttributesControl control or the
IBMModifyDNTimelimitControl control.

c=us

o=MyCompany,
c=us

ou=End,
o=MyCompany, c=us

suffix: ou=End, o=MyCompany, c=us

suffix: o= Lotus, c=us

o=Lotus,
c=us

div=Lotus,ou=End,
o=MyCompany, c=us

cn=Li,o=Lotus,c=us

cn=Li,div=Lotus,ou=End,
o=MyCompany, c=us

Figure 17. Rename non-suffix entry to suffix entry

Chapter 4. Modify DN operations 55

2. Complex Modify DN operations are those which either rename a mid-tree
(non-leaf) node, or which are accompanied by the newSuperior parameter, or
which are accompanied by either the
IBMModifyDNRealignDNAttributesControl control or the
IBMModifyDNTimelimitControl control.

Simple Modify DN operations are always accepted by the master server, and are
replicated if replica entries are present in the LDBM backend where a Modify DN
operation is applied.

Periodic validation of compatible server versions in replica servers
Periodic checks are made of replica servers by the master server which are
intended to increase the likelihood that complex Modify DN operations will be
successfully replicated. Following is a description of the mechanisms used by
master servers to do such checking.

The LDAP server must be able to establish a connection to each of the replica
servers represented by replica entries in an LDBM backend. When the connection
is established to a given replica server, the master server determines if the replica
server is at a compatible server version based on a query of the root DSE on that
server. If a connection cannot be established to a replica server, it is assumed that
the server does not provide the requisite support for replication of Modify DN
operations, and complex Modify DN operations are refused at the master server. If
a connection is established to a replica server and it is determined that the replica
is not at a compatible server version, complex Modify DN operations are refused at
the master server. Note that replication of simple Modify DN operations is always
permitted, and such operations are always performed at the master server.

The master server may enable or disable processing of complex Modify DN
operations, depending on dynamically changing states of replica servers and of
replica entries within the master server’s LDBM backend. It is possible for the
server to refuse complex Modify DN operations after having accepted them for
some period of time, and it is possible for the server to accept complex Modify DN
operations after having refused them for some period of time. Such a change can
be triggered by several events. Each replication cycle tests connections to all
replica servers defined by replica entries in the LDBM backend, and if a connection
can no longer be established to any of the replica servers (even if it had been
established to the same replica on the previous replication cycle), the master server
begins refusing complex Modify DN operations. If all connections succeed but it is
determined that one or more of the replica servers is not at a compatible server
version (such as might happen, for example, when the replica server has been
stopped when running one version of the LDAP server code and subsequently
restarted using a different version of the LDAP server code), the master server
begins refusing complex Modify DN operations. Only if connections may be
established successfully to all replica servers and if they are determined to be
running a compatible server version will the master server resume accepting
complex Modify DN operations.

Other possible events which may influence whether the master server accepts or
refuses complex Modify DN operations involve:

v the addition of new replica entries

v deletion of existing replica entries

v modification of existing replica entries in the LDBM backend.

56 z/VM: TCP/IP LDAP Administration Guide

Each of these causes the master server to temporarily suspend processing of
complex Modify DN operations, until the check of replica servers at the start of the
next replication cycle, at which point the replica server version levels will be used to
determine whether the master server resumes accepting complex Modify DN
operations.

To determine whether a replica server is at a compatible version level, submit a root
DSE search to that server, similar to the following. The -D and -w options only need
to be specified if the replica server does not support anonymous binds.
ldapsearch -h ldaphost -p ldapport -D binddn -w passwd
-s base -b "" objectclass=* ibm-enabledCapabilities

where ldaphost represents the hostname on which the replica server runs, ldapport
is the port number on which the replica server is listening, and binddn and passwd
are the distinguished name and password of a user on the replica server.

If the ibm-enabledCapabilities attribute is returned on the root DSE search and its
values contain 1.3.18.0.2.32.33 (subtree move) or 1.3.18.0.2.32.34 (subtree
rename), then the replica server is capable of supporting those operations.

Loss of replication synchronization due to incompatible replica server
versions

The LDAP Server replication model runs periodically, rather than continuously, and
the state of the replica is not checked until the start of each replication cycle. A
complex Modify DN operation could be accepted or rejected based on inaccurate
information about the state of a replica server between the start of two replication
cycles. As a consequence, the replication process could stall and the
synchronization between the master server and its replicas could be lost.

Attention
It is highly recommended that the LDAP server administrator ensure that each
replica server is at a compatible server version level before starting a master
server which may be the recipient of complex Modify DN operations.

Loss of replication synchronization due to incompatible replica server
versions - recovery

If at some point a master server accepts a complex Modify DN operation which can
not be replicated, there are several means of recovering from this situation. The
best method of recovering from this situation is to ensure that all replica servers are
reachable from the master server, and that all replica servers are running at a
compatible version level (this may entail stopping some replica servers and
restarting them at a compatible version level). Once this state has been reached,
queued changes awaiting propagation to replica servers will drain from the queue at
the master server and the replication process will resume normal operation.

An alternative is to delete the replica entry from the master server corresponding to
the replica server which is currently unreachable or which is running at an
incompatible server level. Note that this will result in loss of synchronization with
that replica server, and if one wishes to later restart the offending replica (such as,
after it has been brought up to a compatible server version) it will be necessary to
take a backup of the master server contents and restore those contents to the
replica server before restarting it, to ensure the two directories are synchronized.

Chapter 4. Modify DN operations 57

58 z/VM: TCP/IP LDAP Administration Guide

Chapter 5. Accessing RACF information

RACF provides definitions of users and groups, as well as access control for
resources. The LDAP server can provide LDAP access to the user and group
information stored in RACF.

Using SDBM, the RACF database backend of the LDAP server, you can:
v Add new users and groups to RACF
v Add users to groups (connections)
v Modify RACF information for users, groups, and connections
v Retrieve RACF information for users, groups, and connections
v Delete users and groups from RACF
v Remove users from groups (connections)
v Retrieve RACF user password and password phrase envelopes

The SDBM backend of the LDAP server implements portions of the adduser,
addgroup, altuser, altgroup, deluser, delgroup, connect, remove, and search
RACF commands.

Note that the SDBM backend only updates the default RACF on a given system.
That is, the AT and ONLYAT clauses of the RACF commands, used to redirect
RACF commands, are not exploited by SDBM.

See z/VM: RACF Security Server Command Language Reference for more
information about the supported RACF commands.

See “Setting up for SDBM” in z/VM: TCP/IP Planning and Customization. for
information on getting your LDAP server configured with SDBM.

SDBM authorization
SDBM operations can be performed after several different types of binds to the
LDAP server. In each of these binds, the LDAP server associates a RACF user ID
with the bound user. SDBM invokes RACF commands under the context of this
RACF user ID, and RACF uses its normal authorization processing to determine
what this RACF user ID can do.

The supported bind mechanisms are:

v Simple bind to SDBM: The RACF user ID is specified in the bind DN. See
“Binding using a RACF user ID and password or password phrase” for more
information.

v LDBM native authentication bind: The RACF user ID specified in the native
authentication entry is used. For more information, see “Native Authentication” in
z/VM: TCP/IP Planning and Customization.

v Certificate bind: The RACF user ID associated with the certificate is used.

Binding using a RACF user ID and password or password phrase
The SDBM backend allows for directory authentication (or bind) using the RACF
user ID and password or password phrase. The RACF user and group information
that make up an identity can be used to establish access control on other LDAP
directory entities. This expands use of the RACF identity to the rest of the
LDAP-managed namespace. Note the following when using RACF access:

© Copyright IBM Corp. 2007, 2009 59

v An LDAP simple bind to a z/VM LDAP server using RACF access support but
having a non-RACF security manager will succeed as long as the __passwd()
call made by the LDAP server is successful. However, no group membership
information will be available for the bound distinguished name if the security
manager is not RACF.

v An LDAP simple bind made to a z/VM LDAP server using RACF access support
provides a successful or unsuccessful LDAP return code. In addition, if the LDAP
return code is LDAP_INVALID_CREDENTIALS, additional information is
provided in the “message” portion of the LDAP result. The additional information
is an LDAP-unique reason code and reason code text in the following format:
Rnnnnnn text

The following errno values returned by __passwd() will have an LDAP reason
code defined for them:

Table 7. The errno values returned by _passwd()

errno value Reason Text

EACCES R000104 The password is not correct

EINVAL R000105 A bind argument is not valid

EMVSERR R004107 The __passwd function failed; not
loaded from a program controlled
library

EMVSEXPIRE R000100 The password has expired

EMVSPASSWORD R000101 The new password is not valid

EMVSSAFEXTRERR R000102 The user id has been revoked

EMVSSAF2ERR R000104 The password is not correct

EMVSSAF2ERR (system problem) R004176 The __passwd() function failed with
error error_code

EMVSSAF2ERR (userid problem) R000104 The password is not correct

ESRCH R000104 The password is not correct or the
user id is not completely defined
(missing password or uid)

Note: The same reason codes are issued when binding using a password or a
password phrase.

The return code returned by LDAP is LDAP_OPERATIONS_ERROR when the
errno value is EMVSERR or EMVSSAF2ERR (system problem). For the other
errno values, the return code is LDAP_INVALID_CREDENTIALS.

SDBM group gathering
After successfully authenticating to the LDAP server, a list is created of the groups
to which the authenticated RACF user ID belongs. Only groups in which the user
ID’s membership is active (has not been revoked) are included in the list. This
group membership list is used in authorization checking when trying to access
entries in directories on the LDAP server.

If the SDBM backend is to be used for authentication purposes only and group
membership is not needed, consider having your clients use the authenticateOnly
server control, to streamline bind processing. This control overrides any extended

60 z/VM: TCP/IP LDAP Administration Guide

group membership searching and default group membership gathering and is
supported for Version 3 clients. See Appendix B, “Supported server controls” for
more information.

Note the authenticateOnly control is not necessary if there is no LDBM or GDBM
backend configured. In this case, SDBM does not do any group gathering.

Associating LDAP attributes to RACF fields
Each RACF field in a user, group, and connection profile must be associated with
an LDAP attribute. The LDAP attribute is used to set the RACF field value in LDAP
add and modify operations and to represent the RACF field in LDAP search output.

The user, group, and connection profile fields defined by RACF are mapped to
predefined attributes in the LDAP schema. These LDAP attributes cannot be
deleted or modified and the attribute names cannot be changed. The following
tables show the RACF fixed field names and the associated LDAP attribute names
for user (Table 8), group (Table 9), and connection (Table 10) profiles. The RACF
names in the table are the keywords used to set the field in RACF commands or
used by RACF in display output (for display-only fields). Not all names apply to all
versions of LDAP and RACF.

Table 8. Mapping of LDAP attribute names to RACF fields (user)

RACF segment name
RACF keyword in
altuser/adduser/listuser LDAP attribute name

User base ADDCATEGORY racfSecurityCategoryList

User base Multi-value: ADSP, SPECIAL,
OPERATIONS, GRPACC,
AUDITOR, UAUDIT, or any other
one-word values, such as
NOEXPIRED and NOOVM

racfAttributes

User base AUTH not displayed by LDAP racfConnectGroupAuthority

User base CLAUTH racfClassName

User base DFLTGRP racfDefaultGroup

User base GROUP racfConnectGroupName

User base Not modifiable - displayed as
LAST-ACCESS

racfLastAccess

User base NAME racfProgrammerName

User base Not modifiable - displayed as
PASSDATE

racfPasswordChangeDate

User base Not modifiable - displayed as
PASS-INTERVAL

racfPasswordInterval

User base PASSWORD racfPassword

User base password envelope - not
modifiable

racfPasswordEnvelope

User base Not modifiable - displayed as
PASSWORD ENVELOPED

racfHavePasswordEnvelope

User base password phrase envelope - not
modifiable

racfPassPhraseEnvelope

User base PHRASE racfPassPhrase

Chapter 5. Accessing RACF information 61

Table 8. Mapping of LDAP attribute names to RACF fields (user) (continued)

RACF segment name
RACF keyword in
altuser/adduser/listuser LDAP attribute name

User base Not modifiable - displayed as
PHRASEDATE

racfPassPhraseChangeDate

User base Not modifiable - displayed as
PHRASE ENVELOPED

racfHavePassPhraseEnvelope

User base RESUME racfResumeDate

User base REVOKE racfRevokeDate

User base SECLABEL racfSecurityLabel

User base SECLEVEL racfSecurityLevel

User base UACC - value is not displayed by
LDAP

racfConnectGroupUACC

User base WHEN(DAYS()) racfLogonDays

User base WHEN(TIME()) racfLogonTime

User base or Group base Not modifiable - displayed as
CREATED

racfAuthorizationDate

User base or Group base DATA racfInstallationData

User base or Group base MODEL racfDatasetModel

User base or Group base OWNER racfOwner

User OVM segment FSROOT racfOvmFileSystemRoot

User OVM segment HOME racfOvmHome

User OVM segment PROGRAM racfOvmInitialProgram

User OVM segment UID racfOvmUid

Note: The following fields are for z/OS® use and it is recommended that these
fields not be used for z/VM.

CICS® segment OPCLASS racfOperatorClass

CICS segment OPIDENT racfOperatorIdentification

CICS segment OPPRTY racfOperatorPriority

CICS segment TIMEOUT racfTerminalTimeout

CICS segment XRFSOFF racfOperatorReSignon

DFP segment - common to
group or user

DATAAPPL SAFDfpDataApplication

DFP segment - common to
group or user

DATACLAS SAFDfpDataClass

DFP segment - common to
group or user

MGMTCLAS SAFDfpManagementClass

DFP segment - common to
group or user

STORCLAS SAFDfpStorageClass

LANGUAGE segment PRIMARY racfPrimaryLanguage

LANGUAGE segment SECONDARY racfSecondaryLanguage

OPERPARM segment ALTGRP racfAltGroupKeyword

OPERPARM segment AUTH racfAuthKeyword

62 z/VM: TCP/IP LDAP Administration Guide

OPERPARM segment AUTO racfAutoKeyword

OPERPARM segment CMDSYS racfCMDSYSKeyword

OPERPARM segment DOM racfDOMKeyword

OPERPARM segment KEY racfKEYKeyword

OPERPARM segment LEVEL racfLevelKeyword

OPERPARM segment LOGCMDRESP racfLogCommandResponseKeyword

OPERPARM segment MFORM racfMformKeyword

OPERPARM segment MIGID racfMGIDKeyword

OPERPARM segment MONITOR racfMonitorKeyword

OPERPARM segment MSCOPE racfMscopeSystems

OPERPARM segment ROUTCODE racfRoutcodeKeyword

OPERPARM segment STORAGE racfStorageKeyword

OPERPARM segment UD racfUDKeyword

TSO segment ACCTNUM SAFAccountNumber

TSO segment DEST SAFDestination

TSO segment HOLDCLASS SAFHoldClass

TSO segment JOBCLASS SAFJobClass

TSO segment MAXSIZE SAFMaximumRegionSize

TSO segment MSGCLASS SAFMessageClass

TSO segment PROC SAFDefaultLoginProc

TSO segment SECLABEL SAFTsoSecurityLabel

TSO segment SIZE SAFLogonSize

TSO segment SYSOUTCLASS SAFDefaultSysoutClass

TSO segment UNIT SAFDefaultUnit

TSO segment USERDATA SAFUserdata

WORKATTR segment WAACCNT racfWorkAttrAccountNumber

WORKATTR segment WAADDR1 racfAddressLine1

WORKATTR segment WAADDR2 racfAddressLine2

WORKATTR segment WAADDR3 racfAddressLine3

WORKATTR segment WAADDR4 racfAddressLine4

WORKATTR segment WABLDG racfBuilding

WORKATTR segment WADEPT racfDepartment

WORKATTR segment WANAME racfWorkAttrUserName

WORKATTR segment WAROOM racfRoom

Table 9. Mapping of LDAP attribute names to RACF fields (group)

RACF segment name
RACF keyword in altgroup/addgroup/
listgrp LDAP attribute name

Group base SUPGROUP racfSuperiorGroup

Group base Not modifiable - displayed as
SUBGROUP(S)

racfSubGroupName

Group base TERMUACC racfGroupNoTermUAC

Chapter 5. Accessing RACF information 63

Table 9. Mapping of LDAP attribute names to RACF fields (group) (continued)

RACF segment name
RACF keyword in altgroup/addgroup/
listgrp LDAP attribute name

Group base UNIVERSAL racfGroupUniversal

Group base Not modifiable - displayed as USER(S) racfGroupUserids

User base or Group base Not modifiable - displayed as CREATED racfAuthorizationDate

User base or Group base DATA racfInstallationData

User base or Group base MODEL racfDatasetModel

User base or Group base OWNER racfOwner

DFP segment - common to group or
user

DATAAPPL SAFDfpDataApplication

DFP segment - common to group or
user

DATACLAS SAFDfpDataClass

DFP segment - common to group or
user

MGMTCLAS SAFDfpManagementClass

DFP segment - common to group or
user

STORCLAS SAFDfpStorageClass

Table 10. Mapping of LDAP attribute names to RACF fields (connection)

RACF segment
name RACF keyword in connect LDAP attribute name

Connection base Multi-value: ADSP, AUDITOR GRPACC,
OPERATIONS, SPECIAL

racfConnectAttributes

Connection base AUTHORITY racfConnectGroupAuthority

Connection base Not modifiable - displayed as CONNECT-DATE racfConnectAuthDate

Connection base Not modifiable - displayed as CONNECTS racfConnectCount

Connection base Not modifiable - displayed as LAST-CONNECT racfConnectLastConnect

Connection base OWNER racfConnectOwner

Connection base RESUME racfConnectResumeDate

Connection base REVOKE racfConnectRevokeDate

Connection base UACC racfConnectGroupUACC

Special usage of racfAttributes and racfConnectAttributes
The racfAttributes attribute is a multi-valued attribute that can be used to specify
any single-word keywords that can be specified on a RACF adduser or altuser
command. For example, racfAttributes can be used to add a RACF user entry with
’ADSP GRPACC NOPASSWORD’ or modify a RACF user entry with ’NOGRPACC
SPECIAL NOEXPIRED RESUME NOOVM’ . Additional values, such as
PASSWORD, can be returned in racfAttributes that are not returned by the
listuser.

Similarly, racfConnectAttributes can be used to specify any single-word keywords
that can be specified on a RACF connect command.

64 z/VM: TCP/IP LDAP Administration Guide

RACF namespace entries
When the SDBM backend is used to make RACF information accessible over the
LDAP protocol, the top four entries in the hierarchy are reserved, read-only, and
generated by the server. The purpose of these reserved entries is to enable a
hierarchical representation of RACF users, groups, and connections. For example,
the top four entries in Figure 18 are:
v cn=RACFA,o=IBM,c=US (suffixDN)
v profileType=User,cn=RACFA,o=IBM,c=US
v profileType=Group,cn=RACFA,o=IBM,c=US
v profileType=Connect,cn=RACFA,o=IBM,c=US

The value of the top DN is generated from the suffix line in the DS CONF file for
the SDBM backend entry (see “Setting up for SDBM” in z/VM: TCP/IP Planning and
Customization.).

Following is a high-level diagram of the RACF backend.

SDBM schema information
The attributes and object classes used by SDBM to represent RACF values are
always in the LDAP server schema.

SDBM support for pound sign
An SDBM DN can contain a pound sign (#) anywhere in the DN, including the
suffix. If the pound sign is at the beginning of a value in the DN, it must be escaped
by preceding it with a single backslash (\). Note that the suffix in the LDAP server
configuration file must use two back slashes (\\) to escape a pound sign, but only a
single backslash is used in a DN.

For example, if the SDBM suffix in the configuration file is
suffix cn=\\#plex#1

then the DN for the RACF user #abc# would be
racfid=\#abc#,profiletype=user,cn=\#plex#1

Figure 18. RACF namespace hierarchy

Chapter 5. Accessing RACF information 65

Pound signs at the beginning of a value in a DN returned by SDBM are always
escaped by a single backslash. Other pound signs within the DN may or may not
be escaped, depending on the usage of the DN.

When specifying a value starting with a pound sign for an attribute within an add or
modify request, escape the pound sign with a back slash if the attribute is part of a
DN, otherwise, do not escape the pound sign. For instance, to add a user with the
default group #d1grp, specify either:
racfdefaultgroup: racfid=\#d1grp,profiletype=group,cn=\#plex#1

or
racfdefaultgroup: #d1grp

within the entry.

When specifying a value containing a pound sign for an attribute within a search
filter, the pound sign can be escaped or not. For instance, to search for all RACF
users starting with #user, use the search filter racfid=#user* or racfid=\#user*.

Control of access to RACF data
As explained above, SDBM operations result in issuing RACF commands. Table 11
and Table 12 indicate which commands are issued for various SDBM operations.
The RACF commands are issued under the context of the RACF user ID that has
bound to SDBM. RACF determines the results of the RACF commands based on
the RACF authority of that user ID. If the RACF command fails, the SDBM
operation fails and returns any error information issued by RACF.

In particular, the RACF search command can fail due to lack of authority, even if
the bound user is able to extract RACF data from user IDs that match the RACF
search. In this case, SDBM searches that result in issuing a RACF search
command fail and return:
ldap_search: Unknown error
ldap_search: additional info: ICH31005I NO ENTRIES MEET SEARCH CRITERIA

SDBM operational behavior
Table 11 shows how SDBM behaves during different LDAP operations.

66 z/VM: TCP/IP LDAP Administration Guide

Table 11. RACF backend behavior

Target DN LDAP operation behavior

suffixDN
Add Error: Unwilling to perform

Modify Error: Unwilling to perform

Delete Error: Unwilling to perform

Modify DN
Error: Unwilling to perform

Compare
Compare attribute

Search base
Return requested attributes

Search one level
Perform a base search against each subordinate of this entry

Search subtree
See Searching the entire RACF database

Bind Error: No credentials

profiletype=User,suffixDN
Add Error: Unwilling to perform

Modify Error: Unwilling to perform

Delete Error: Unwilling to perform

Modify DN
Error: Unwilling to perform

Compare
Compare attribute

Search base
Return requested attributes

Search one level
See Searching the entire RACF database

Search subtree
See Searching the entire RACF database

Bind Error: No credentials

profiletype=Group,suffixDN
Add Error: Unwilling to perform

Modify Error: Unwilling to perform

Delete Error: Unwilling to perform

Modify DN
Error: Unwilling to perform

Compare
Compare attribute

Search base
Return requested attributes

Search one level
See Searching the entire RACF database

Search subtree
See Searching the entire RACF database

Bind Error: No credentials

Chapter 5. Accessing RACF information 67

Table 11. RACF backend behavior (continued)

Target DN LDAP operation behavior

profiletype=Connect,suffixDN
Add Error: Unwilling to perform

Modify Error: Unwilling to perform

Delete Error: Unwilling to perform

Modify DN
Error: Unwilling to perform

Compare
Compare attribute

Search base
Return requested attributes

Search one level
See Searching the entire RACF database

Search subtree
See Searching the entire RACF database

Bind Error: No credentials

racfid=XYZ111,profiletype=User, suffixDN
Add Perform an adduser RACF command using USER=XYZ111

Modify Perform an altuser RACF command using USER=XYZ111

Delete Perform a deluser RACF command using USER= XYZ111

Modify DN
Error: Unwilling to perform

Compare
Compare requested attribute with data returned from a profile
extract RACF command using USER=XYZ111

Search base
Perform a profile extract RACF command using USER=XYZ111

Search one level
Empty search results (this is a leaf node in the hierarchy)

Search subtree
Perform a profile extract RACF command using USER=XYZ111

Bind If bind type is not simple, error: Unwilling to perform
else use __passwd() to verify the user ID and password or
password phrase combination and then perform a profile extract
RACF command using USER=XYZ111 if gathering group
membership

68 z/VM: TCP/IP LDAP Administration Guide

Table 11. RACF backend behavior (continued)

Target DN LDAP operation behavior

racfid=GRP222,profiletype= Group,
suffixDN Add Perform an addgroup RACF command using GROUP=GRP222

Modify Perform an altgroup RACF command using GROUP=GRP222

Delete Perform a delgroup RACF command using GROUP=GRP222

Modify DN
Error: Unwilling to perform

Compare
Compare requested attribute with data returned from a profile
extract RACF command using GROUP=GRP222

Search base
Perform a profile extract RACF command using
GROUP=GRP222

Search one level
Empty search results (this is a leaf node in the hierarchy)

Search subtree
Perform a profile extract RACF command using
GROUP=GRP222

Bind Error: No credentials

racfuserid=XYZ111+racfgroupid=
GRP222,profiletype=Connect, suffixDN Add Perform a connect RACF command for USER=XYZ111 using

GROUP=GRP222

Modify Perform a connect RACF command for USER=XYZ111 using
GROUP=GRP222

Delete Perform a remove RACF command for USER=XYZ111 using
GROUP=GRP222

Modify DN
Error: Unwilling to perform

Compare
Compare requested attribute with data returned from a profile
extract RACF command using USER=XYZ111

Search base
Perform a profile extract RACF command using USER=XYZ111

Search one level
Empty search results (this is a leaf node in the hierarchy)

Search subtree
Perform a profile extract RACF command using USER=XYZ111

Bind Error: No credentials

If LDAP is running with an SDBM backend, the ldap_modify and ldap_add APIs
can return LDAP_OTHER or LDAP_SUCCESS and have completed a partial
update to an entry in RACF. The results will match what would occur if the update
were done using the RACF altuser, altgroup, and connect commands. If several
RACF attributes are being updated and one of them is in error, RACF might still
update the other attributes, without, in some cases, returning an error message. If
there is a RACF message, LDAP always returns it in the result

Chapter 5. Accessing RACF information 69

The RACF connect command is used to both add a user connection to a group
and to modify a user’s connection to a group. As a result, the SDBM add and
modify support for connection entries is different than normal LDAP support:

v When adding a connection entry that already exists, the entry is modified using
the specified attributes. There is no indication returned that the entry already
existed.

v When modifying a connection entry that does not exist, the entry is added using
the specified attributes. There is no indication returned that the entry did not
exist.

Notes about specifying attribute values:

1. There are several SDBM attributes whose value is a RACF user or group name.
For convenience, this value can be specified either as just the RACF name or
as the complete LDAP DN. For example, when adding a user with a default
group of grp222, the racfDefaultGroup attribute can be specified as
racfDefaultGroup: grp222

or
racfDefaultGroup: racfid=grp222,profiletype=group,cn=racfu01,o=ibm,c=us

where cn=racfu01,o=ibm,c=us is the SDBM suffix.

The value returned by SDBM from a search is always the complete LDAP DN.

2. For multi-value attributes, the RACF altuser command does not always support
the ability to both add a value and replace the existing value. As a result, SDBM
does not always respect the type of modification (add versus replace) that is
specified in a modify command. Values for the following multi-value attributes
are always added to the existing value (even if replace is specified):
racfAttributes, racfClassName, racfConnectAttributes, racfLevelKeyword,
racfMformKeyword, racfMonitorKeyword, racfSecurityCategoryList. Values
for the following multi-value attributes always replace the existing value (even if
add is specified): racfDomains, racfMscopeSystems,
racfNetviewOperatorClass, racfOperatorClass, racfRoutcodeKeyword,
racfRslKey, racfTslKey. Values for the following multi-value attributes either are
added to the existing values or replace the existing values, depending on the
new and existing values: racfAuthKeyword.

For single-value attributes, there is no difference between using an add
modification or a replace modification to set the value. For either type of
modification, the value is added if the attribute value does not exist and the
value replaces the existing attribute value, if there is one.

3. In order to update CICS-related attributes, CICS must be set up on your
system; otherwise, errors result.

4. For modify, if a request is made to delete a specific attribute value for an
attribute where specific values cannot be selectively deleted,
LDAP_UNWILLING_TO_PERFORM is returned. There are four attributes where
specific attribute values are accepted: racfAttributes, racfClassName,
racfConnectAttributes, and racfSecurityCategoryList. If an attempt is made
to delete any attribute that has no corresponding delete command in RACF,
LDAP_UNWILLING_TO_PERFORM is returned.

SDBM search capabilities
SDBM supports a limited set of search filters. The following table describes each
supported filter and indicates from what bases it is valid, what sort of entries it
returns (a complete entry or entries that just contain the DN of the entry), and what
RACF commands are issued to perform the search. Most searches can only be

70 z/VM: TCP/IP LDAP Administration Guide

performed from one of the top four entries: the suffix entry, the
profiletype=user,suffix entry, the profiletype=group,suffix entry, and the
profiletype=connect,suffix entry.

Table 12. SDBM search filters

Filter Search behavior

objectclass=*
Description:

match any user, group, and connection profile

Allowed base:
any SDBM entry

Returns:

v DN-only entries if scope includes all users,
groups, or connections

v Complete entry if scope includes a single entry

Commands:

v if scope includes all users:
search class(user) filter(*)

v if scope includes all groups:
search class(group) filter(*)

v if scope includes all connections:

– search class(group) filter(*)

– followed by group profile extract for each
group

v if scope includes a single user:
user profile extract

v if scope includes a single group:
group profile extract

v if scope includes a single connection:
connect profile extract

racfgroupid=any_value
Description:

find connection profiles for members of the RACF
groups whose names match any_value (can
contain wildcards)

Allowed base:
suffix
profiletype=connect,suffix

Returns:
DN-only entries

Commands:

v if no wildcard in any_value:
group profile extract

v if wildcard in any_value:

– search class(group) filter(any_value)

– followed by group profile extract for each
group

Chapter 5. Accessing RACF information 71

Table 12. SDBM search filters (continued)

Filter Search behavior

racfid=any_value
Description:

find user and group profiles for the RACF users
and groups whose names match any_value (can
contain wildcards)

Allowed base:
suffix
profiletype=user,suffix
profiletype=group,suffix

Returns:
DN-only entries

Commands:

v if scope includes all users:

search class(user) filter(any_value)

v if scope includes all groups:

search class(group) filter(any_value)

racfuserid=any_value
Description:

find connection profiles for RACF users whose
names match any_value (can contain wildcards)

Allowed base:
suffix
profiletype=connect,suffix

Returns:
DN-only entries

Commands:

v if no wildcard in any_value:
user profile extract

v if wildcard in any_value

– search class(user) filter(any_value)

– followed by user profile extract for each
user

72 z/VM: TCP/IP LDAP Administration Guide

Table 12. SDBM search filters (continued)

Filter Search behavior

(&(racfuserid=any_value1)
(racfgroupid=any_value2)) Description:

find connection profiles for RACF users whose
names match any_value1 and who belong to
RACF groups whose names match any_value2
(both can contain wildcards)

Allowed base:
suffix
profiletype=connect,suffix

Returns:
DN-only entries

Commands:

v if no wildcard in any_value1:

user profile extract

v if no wildcard in any_value2

group profile extract

v if wildcard in both any_value1 and any_value2

– search class(group) filter(any_value2)

– followed by group profile extract for each
group

Except for the AND filter for connections, complex search filters that include NOT,
AND, OR, LE, or GE constructs are not supported.

The values for the racfid, racfuserid, and racfgroupid filters can include the wild
cards supported by RACF. These wild cards are ’*’ which represents any number of
characters, and ’%’ which represents one character. For example:
(&(racfuserid=usr*)(racfgroupid=*grp))

searches for all the connections between users whose names begin with usr and
groups whose names end with grp.

Note about searching universal groups: Most of the members of a RACF
universal group are not actually contained in the group’s list of members. As a
result, a search of the entry for a universal group does not return most of the
group’s members. In addition, a search for the connection entry corresponding to a
member of a universal group can return different results depending on the
connection search filter that is used:

v If the racfuserid part of the connection search filter does not contain a wild card,
then the connection entry is returned for the specified racfuserid.

v If the racfuserid part of the connection search filter contains a wild card, then
the connection entry for a user is returned only if the user is explicitly contained
in the universal group’s list of members.

Searching the entire RACF database
Searches that query the entire RACF database, for example, a subtree search from
one of the top four directory entries, return only the DN (distinguished name)
attribute. You may then obtain more specific data about a particular user or group
on a follow-up search using a specific DN as the search base.

Chapter 5. Accessing RACF information 73

RACF restriction on amount of input: RACF limits the number of operands that
are specified in RACF commands. If the number of operands surpasses this limit,
RACF ignores some of the operands and processes the command. Therefore, an
SDBM add or modify operation containing many attributes appears to run
successfully but some of the attributes may not be set. For more information, see
z/VM: RACF Security Server Command Language Reference.

LDAP restriction on RACF data: If a RACF field contains unprintable characters,
the value returned in the LDAP output will probably not match the RACF value and
will probably not be printable. If a RACF field contains binary zeros, the LDAP
output may be truncated. In particular, make sure that the installation DATA field in
the RACF user profile does not contain binary zeros or other unprintable characters.

Retrieving RACF user password and password phrase envelopes
SDBM returns the RACF user password envelope when the
racfPasswordEnvelope attribute is specified in the attributes to be returned from a
search of a RACF user. Similarly, the RACF user password phrase envelope is
returned when the racfPassPhraseEnvelope attribute is specified on the search.
Each envelope is returned by the LDAP server as a binary data berval (binary data
and length). If the racfPasswordEnvelope and racfPassPhraseEnvelope
attributes are not specified on the search request, the RACF envelopes are not
returned.

Note: When using a utility such as ldapsearch to retrieve the password or
password phrase envelopes, the returned value is base-64 encoded.

Using SDBM to change a user password or password phrase in RACF
There are two ways to use SDBM to change a user password or password phrase
in RACF.

1. The user password or password phrase of the bind user can be changed during
an LDAP simple bind to SDBM. The simple bind occurs as part of an LDAP
function such as search, add, modify, compare, or delete. The password or
password phrase change is provided in the password portion of the LDAP
simple bind. The change must be in the following format:
currentvalue/newvalue

The current and new value must both be passwords or password phrases. An
error is returned if one of the values is a password and the other is a password
phrase.

The forward slash (/) is used as the indication of a password or password
phrase change during the LDAP simple bind. Password or password phrase
changes made using the LDAP simple bind to the SDBM backend of the z/VM
LDAP server are subject to the system password rules. A password or password
phrase change fails with LDAP return code LDAP_INVALID_CREDENTIALS
and LDAP reason code of:
R000101 The new password is not valid

if the new password or password phrase does not pass the rules established on
the system.

Note: A forward slash (/) is a legal character in a password phrase (but not in a
password). During SDBM bind, a backward slash (\) is an escape
character to indicate the next character is part of the password or
password phrase and has no special meaning. The backward slash is
removed during bind processing. Therefore, during bind, a forward slash

74 z/VM: TCP/IP LDAP Administration Guide

in a password phrase must be preceded by a backward slash to indicate
the forward slash is part of the password phrase and is not the password
phrase change indicator. For example, the password phrase
this1slash/ispartofthevalue2use must be specified as
this1slash\/ispartofthevalue2use during bind. A backward slash is also
a legal character in a password phrase (but not in a password).
Therefore, a backward slash in a password phrase must be preceded by
another backward slash to indicate that it is not an escape character.

Once the bind succeeds, the password or password phrase is changed even if
the LDAP function eventually fails.

For example, the following command changes the password for RACF user U1
from abc to xyz, assuming the SDBM suffix is cn=racfu01,o=ibm,c=us:
ldapsearch -h ldaphost -p ldapport -D racfid=u1,profiletype=user,
cn=racfu01,o=ibm,c=us -w abc/xyz -s base -b "" objectclass=*

2. To change any RACF user’s password, create an LDIF file that modifies the
racfPassword attribute for that user and then invoke ldapmodify to change the
password. If the syntax of the new password is not valid, the command fails,
returning “ldap_modify: Unknown error”. (Note that this response can also be
returned under other circumstances.)

For example, the following LDIF file, pw.mod, resets the password for RACF user
U1 to xyz, assuming the SDBM suffix is cn=racfu01,o=ibm,c=us. The
racfAttributes: noexpired record is added to result in a new password that is
not expired. If noexpired is not specified, then the password is reset but is
expired, requiring U1 to change the password at next logon.
dn: racfid=u1,profiletype=USER,cn=racfu01,o=ibm,c=us
changetype: modify
add: x
racfpassword: xyz
racfattributes: noexpired

Then, assuming that the RACF user admin1 has the necessary RACF
authorization to update RACF, the command:
ldapmodify -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,
cn=racfu01,o=ibm,c=us -w passwd -f pw.mod

modifies the password or password phrase for U1.

A RACF user’s password phrase is changed the same way as described above,
using the racfPassPhrase attribute.

Using LDAP operation utilities with SDBM
The LDAP operation utilities described in z/VM: TCP/IP User’s Guide can be used
to update data in RACF. Following are some examples. These examples assume
that the RACF user admin1 has the necessary RACF authorization to make these
RACF updates and that cn=racfu01,o=ibm,c=us is the SDBM suffix.

Example: adding a user to RACF
If the LDIF file user.add contains:
dn: racfid=newuser,profiletype=user,cn=racfu01,o=ibm,c=us
objectclass: racfUser
racfid: newuser

The following command will add user ID newuser to RACF:
ldapadd -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us
-w passwd -f user.add

Chapter 5. Accessing RACF information 75

Note that the only required attribute to add a user is the user ID specified as racfid.
This mimics the RACF adduser command.

Example: modifying a user in RACF
To add an OVM segment for newuser, the LDIF file user.mods could contain:
dn: racfid=newuser,profiletype=user,cn=racfu01,o=ibm,C=us
changetype: modify
objectclass: racfUserOvmSegment
racfOvmHome: /home/newuser
racfOvmInitialProgram: /home/newuser/bin/startup
racfOvmUid : 500

The command:
ldapmodify -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,
cn=racfu01,o=ibm,c=us -w passwd -f user.mods

modifies the RACF user profile for user ID newuser, adding an OVM segment with
the specified values.

Example: searching for user information in RACF
To see the information in RACF for newuser, the following search command can be
performed:
ldapsearch -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,
cn=racfu01,o=ibm,c=us -w passwd -b "racfid=newuser,profiletype=user,cn=racfu01,o=ibm,c=us"
"objectclass=*"

The results that are returned are most of the non-default data that RACF displays
on a listuser command, but using LDAP attribute names. Following is an example
for newuser:
racfid=NEWUSER,profiletype=USER,cn=RACFU01,o=IBM,c=US
racfid=NEWUSER
racfauthorizationdate=10/23/06
racfowner=RACFID=OPERATOR,PROFILETYPE=USER,CN=RACFU01,O=IBM,C=US
racfpasswordinterval=30
racfdefaultgroup=RACFID=SYS1,PROFILETYPE=GROUP,CN=RACFU01,O=IBM,C=US
racflogondays=SUNDAY
racflogondays=MONDAY
racflogondays=TUESDAY
racflogondays=WEDNESDAY
racflogondays=THURSDAY
racflogondays=FRIDAY
racflogondays=SATURDAY
racflogontime=ANYTIME
racfconnectgroupname=RACFID=SYS1,PROFILETYPE=GROUP,CN=RACFU01,O=IBM,C=US
racfhavepasswordenvelope=NO
racfattributes=PASSWORD
racfovmuid=500
racfovmhome=/home/newuser
racfovminitialprogram=/home/newuser/bin/startup
objectclass=RACFBASECOMMON
objectclass=RACFUSER
objectclass=RACFUSEROVMSEGMENT

Example: searching for a user’s password and password phrase
envelopes in RACF
The following search returns the racfPasswordEnvelope and
racfPassPhraseEnvelope attributes:
ldapsearch -h ldaphost -p ldapport
-D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us
-w passwd -L -b racfid=newuser,profiletype=user,cn=racfu01,o=ibm,c=us
"objectclass=*" racfpasswordenvelope racfpassphraseenvelope

76 z/VM: TCP/IP LDAP Administration Guide

The result returned is:
dn: racfid=newuser,profiletype=user,cn=racfu01,o=ibm,c=us
racfpasswordenvelope:: base-64_encoded_password_envelope
racfpassphraseenvelope:: base-64_encoded_passphrase_envelope

Example: adding a group to RACF
If the LDIF file group.add contains:
dn: racfid=grp222,profiletype=group,cn=racfu01,o=ibm,c=us
objectclass: racfGroup
racfid: grp222

The following command adds group ID grp222 to RACF:
ldapadd -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us
-w passwd -f group.add

Note that the only required attribute to add a group is the group ID specified as
racfid. This mimics the RACF addgroup command.

The LDAP commands for modifying, searching, and removing a RACF group using
SDBM are very similar to the corresponding commands for a RACF user. See the
examples in this section for a RACF user for more information.

Example: connecting a user to a group in RACF
To connect newuser to group grp222, the LDIF file connect.add could contain:
dn: racfuserid=newuser+racfgroupid=grp222,profiletype=connect,cn=racfu01,o=ibm,c=us
objectclass: racfconnect
racfuserid: newuser
racfgroupid: grp222

The command:
ldapadd -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us
-w passwd -f connect.add

makes newuser a member of the grp222 group. Note that grp222 must be an
existing RACF group ID, newuser must be an existing RACF user ID, and the only
required attributes to add a connection are racfuserid (the user ID) and
racfgroupid (the group ID).

Example: searching for information about a user’s connection to
a group in RACF
To see information about newuser’s connection to the grp222 group, the following
search can be performed:
ldapsearch -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us
-w passwd -b "racfuserid=newuser+racfgroupid=grp222,profiletype=connect,
cn=racfu01,o=ibm,c=us" "objectclass=*"

The result returned is the non-default information from the GROUP section that
RACF displays on a listuser command, but using LDAP attribute names. Following
is an example for newuser’s connection to grp222:
racfuserid=NEWUSER+racfgroupid=GRP222,profiletype=CONNECT,cn=racfu01,o=ibm,c=us
racfuserid=NEWUSER
racfgroupid=GRP222
racfconnectauthdate=07/18/05
racfconnectowner=RACFID=ADMIN1,PROFILETYPE=USER,cn=racfu01,o=ibm,c=us
racfconnectgroupauthority=USE
racfconnectgroupuacc=NONE
racfconnectcount=0
objectclass=RACFBASECOMMON
objectclass=RACFCONNECT

Chapter 5. Accessing RACF information 77

To see all the groups that newuser is connected to, either of the following searches
can be performed:
ldapsearch -h ldaphost -p ldapport -D racfid=admin1,profiletype=user, cn=racfu01,o=ibm,c=us
-w passwd -b "profiletype=connect,cn=racfu01,o=ibm,c=us" "racfuserid=newuser"

or
ldapsearch -h ldaphost -p ldapport -D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us
-w passwd -b "profiletype=connect,cn=racfu01,o=ibm,c=us"
"(&(racfuserid=newuser)(racfgroupid=*))"

For both commands, the results are:
racfuserid=NEWUSER+racfgroupid=G1,profiletype=CONNECT,cn=racfu01,o=ibm,c=us

racfuserid=NEWUSER+racfgroupid=GRP222,profiletype=CONNECT,cn=racfu01,o=ibm,c=us

Note that G1 was the default group to which newuser was connected when newuser
was created.

Example: removing a user from a group in RACF
The following command removes newuser from the grp222 group (the equivalent of
the RACF remove command):
ldapdelete -h ldaphost -p ldapport
-D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us -w passwd
"racfuserid=newuser+racfgroupid=grp222,profiletype=connect,cn=racfu01,o=ibm,c=us"

Example: removing a user from RACF
The following command removes the newuser user profile from RACF, also
removing all of newuser’s connections to groups (the equivalent of a RACF deluser
command):
ldapdelete -h ldaphost -p ldapport
-D racfid=admin1,profiletype=user,cn=racfu01,o=ibm,c=us -w passwd
"racfid=newuser,profiletype=user,cn=racfu01,o=ibm,c=us"

Deleting attributes
If a request is made to delete the racfAttributes attribute and no values are
provided, SDBM generates a command to delete the following values (even if the
user does not currently have that value): ADSP, AUDITOR, GRPACC, OIDCARD,
OPERATIONS, SPECIAL, UAUDIT. Similarly, a request to delete the
racfConnectAttributes attribute with no values results in a command to delete the
following values: ADSP, AUDITOR, GRPACC, OPERATIONS, SPECIAL. Deleting a
specific value for racfAttributes or racfConnectAttributes requires that the value
itself be specified on the delete operation.

For example, to remove the OPERATIONS and AUDITOR values from the
racfAttributes values of user ID user1 (leaving any other racfAttributes values the
user has), you would issue an ldapmodify command with the following file:
dn: racfid=user1,profiletype=user,cn=racfu01,o=ibm,c=us
changetype: modify
delete: racfAttributes
racfAttributes: OPERATIONS
racfAttributes: AUDITOR

To remove all the racfAttributes values listed above of user ID user1, you would
issue an ldapmodify command with the following file:
dn: racfid=user1,profiletype=user,cn=racfu01,o=ibm,c=us
changetype: modify
delete: racfAttributes

78 z/VM: TCP/IP LDAP Administration Guide

In addition, you can use the racfAttributes attribute to remove an entire segment
from a user. For example, to remove the OVM segment from user ID user1, you
would issue an ldapmodify command with one of the following files:
dn: racfid=user1,profiletype=user,cn=racfu01,o=ibm,c=us
changetype: modify
delete: racfAttributes
racfAttributes: OVM

or
dn: racfid=user1,profiletype=user,cn=racfu01,o=ibm,c=us
changetype: modify
add: racfAttributes
racfAttributes: NOOVM

Following are some additional examples of deleting attributes:
v dn: racfid=user1,profiletype=user,cn=racfu01,o=ibm,c=us

changetype: modify
delete: racfProgrammerName

Returns: LDAP_UNWILLING_TO_PERFORM

The racfProgrammerName attribute is one that cannot be deleted.
v dn: racfid=user1,profiletype=user,cn=racfu01,o=ibm,c=us

changetype: modify
delete: racfBuilding
racfBuilding: 001

Returns: LDAP_UNWILLING_TO_PERFORM

You cannot specify a value to be removed for racfBuilding.
v dn: racfid=user1,profiletype=user,cn=racfu01,o=ibm,c=us

changetype: modify
delete: racfBuilding

Expected result: successful removal of the attribute racfBuilding and
LDAP_SUCCESS returned.

Chapter 5. Accessing RACF information 79

80 z/VM: TCP/IP LDAP Administration Guide

Chapter 6. CRAM-MD5 and DIGEST-MD5 authentication

The z/VM LDAP server allows clients to authenticate using the CRAM-MD5
(Challenge Response Authentication Mechanism) and DIGEST-MD5 SASL bind
mechanisms. CRAM-MD5 is defined in RFC 2195: IMAP/POP AUTHorize Extension
for Simple Challenge/Response. DIGEST-MD5 is defined in RFC 2831: Using
Digest Authentication as a SASL Mechanism. Both the CRAM-MD5 and
DIGEST-MD5 mechanisms are multi-stage binds where the server sends the client
a challenge and then the client sends a challenge response back to the server to
complete the authentication. The client challenge response contains a hash of the
password entered by the user, the username, and other pieces of data encoded to
the specifications of either the CRAM-MD5 or DIGEST-MD5 RFCs.

The CRAM-MD5 and DIGEST-MD5 SASL bind mechanisms are more secure than
performing simple binds since the credentials are not passed in clear text. Also, the
CRAM-MD5 and DIGEST-MD5 bind mechanisms on the z/VM LDAP server do not
require any additional products to be installed or configured.

The z/VM LDAP server DIGEST-MD5 bind mechanism supports the integrity and
confidentiality options defined in RFC 2831: Using Digest Authentication as a SASL
Mechanism. Upon the successful completion of a DIGEST-MD5 bind, the negotiated
quality of protection (qop) is used for subsequent messages sent over the
connection. The negotiated qop continues until the completion of a new SASL bind
request. If the new SASL bind request fails, the connection reverts to anonymous
authentication with no integrity or confidentiality support.

The DIGEST-MD5 authentication mechanism is more secure than the CRAM-MD5
authentication mechanism because it prevents chosen plaintext password attacks.
During a DIGEST-MD5 authentication exchange between a client and the server,
there is additional information passed which is used to construct a more robust
hashing algorithm when compared against a CRAM-MD5 authentication making it
more difficult to decipher.

DIGEST-MD5 bind mechanism restrictions in the z/VM LDAP server
DIGEST-MD5 restrictions on the LDAP server:

1. The unspecified userid form of the authorization identity is not supported;
however, the DN version is supported on the z/VM LDAP client and server.

2. Subsequent authentication is not supported.

Considerations for setting up an LDBM backend for CRAM-MD5 and
DIGEST-MD5 authentication

The following are considerations for setting up a LDBM backend for CRAM-MD5
and DIGEST-MD5 authentication:

1. In order to use the CRAM-MD5 bind mechanism on the z/VM LDAP server, the
LDBM entries that you bind with should contain a uid attribute value. The uid
attribute is always in the LDAP server schema. There are three ways to perform
a CRAM-MD5 bind to the z/VM LDAP server:

a. Only specifying the bindDN in the bind request in your client application.
When using the z/VM LDAP operation utilities, such as ldapsearch, this is
done by only specifying the -D option.

© Copyright IBM Corp. 2007, 2009 81

http://www.ietf.org/rfc/rfc2195.txt?number=2195
http://www.ietf.org/rfc/rfc2195.txt?number=2195
http://www.ietf.org/rfc/rfc2831.txt?number=2831
http://www.ietf.org/rfc/rfc2831.txt?number=2831
http://www.ietf.org/rfc/rfc2831.txt?number=2831
http://www.ietf.org/rfc/rfc2831.txt?number=2831

b. Only specifying the username in the CRAM-MD5 bind mechanism in your
client application. The username that is specified must map to one of the
uid attribute values in one of the LDBM entries. When using the z/VM LDAP
operation utilities, such as ldapsearch, this is done by only specifying the
-U option.

c. Specifying both the bindDN in the bind request and the username in the
CRAM-MD5 bind mechanism in your client application. The username that is
specified must map to one of the uid attribute values in one of the LDBM
entries. The bindDN specified in the bind request must map to the same
distinguished name as the username. When using the z/VM LDAP operation
utilities, such as ldapsearch, this is done by specifying both the -D and the
-U options.

For more information on the z/VM LDAP operation utilities, see z/VM: TCP/IP
LDAP Administration Guide.

Assuming that the password entered on the client application is correct, the
CRAM-MD5 bind is successful, otherwise it returns an LDAP credentials error.

2. In order to use the DIGEST-MD5 bind mechanism on the z/VM LDAP server,
the LDBM entries that you bind with must contain a uid attribute value. The uid
attribute is always present in the server schema. There are two ways to perform
a DIGEST-MD5 bind to the z/VM LDAP server:

a. Only specifying the username in the DIGEST-MD5 bind mechanism in your
client application. The username that is specified must map to one of the
uid attribute values in one of the LDBM entries. When using the z/VM LDAP
operation utilities, such as ldapsearch, this is done by only specifying the
-U option.

b. Specifying both the username and the authorization DN in the DIGEST-MD5
bind mechanism in your client application. The username that is specified
must map to one of the uid attribute values in one of the LDBM entries. The
authorization DN that is specified must map to the same distinguished name
as the username. When using the z/VM LDAP operation utilities, such as
ldapsearch, this is done by specifying both the -D and the -U options.

For more information on the z/VM LDAP operation utilities, see z/VM: TCP/IP
LDAP Administration Guide.

Assuming that the password entered on the client application is correct, the
DIGEST-MD5 bind will be successful, otherwise it will return an LDAP
credentials error.

3. It is strongly suggested that the uid attribute values specified on the entries to
be used for CRAM-MD5 or DIGEST-MD5 authentication be unique across every
LDBM backend that is configured on the LDAP server. Authentication can fail if
more than one entry has the same uid attribute value.

4. In order for the CRAM-MD5 and DIGEST-MD5 binds to work properly, the
userPassword attribute values for the entry must be in clear text (not
recommended) or encrypted in either DES or AES. DES and AES encryption
are recommended since they both encrypt the userPassword and provide clear
text decryption. For additional information on AES and DES encryption, refer to
“Configuring for Encryption” in z/VM: TCP/IP Planning and Customization. The
z/VM LDAP server needs access to the clear text password so that the
CRAM-MD5 and DIGEST-MD5 bind mechanisms work properly against that
entry.

5. CRAM-MD5 and DIGEST-MD5 binds are not supported with entries that are
participating in native authentication.

6. CRAM-MD5 and DIGEST-MD5 binds are not supported to the SDBM backend.

82 z/VM: TCP/IP LDAP Administration Guide

CRAM-MD5 and DIGEST-MD5 configuration option
The digestRealm option in the LDAP server configuration file allows for the
specification of a realm name to be used to help create the CRAM-MD5 and
DIGEST-MD5 hashes. The value of this option gets passed on the initial challenge
from the server to the client once it has been decided that a CRAM-MD5 or
DIGEST-MD5 bind is desired. See the digestRealm option in z/VM: TCP/IP
Planning and Customization. If the digestRealm configuration option is not
specified, the realm name defaults to the fully qualified hostname of the system
where the LDAP server is running assuming that a DNS (Domain Name Server) is
available. If the digestRealm option is not specified and the fully qualified
hostname of the LDAP server can not be determined because of a problem with the
DNS (Domain Name Server), any CRAM-MD5 or DIGEST-MD5 binds attempted will
fail.

Example of setting up for CRAM-MD5 and DIGEST-MD5
The following diagram shows an example of how you could set up your entries in
your LDBM backend.

Note: Due to space limitations of the diagram, the entries in the example do not
contain all of the necessary information to make them valid directory entries.
For example, object classes and required attributes have been left out of
many of the entries.

The following table outlines what happens if you attempt to do a CRAM-MD5 or
DIGEST-MD5 bind from a client. The username refers to the -U option on the z/VM
LDAP operation utilities, while the bindDN (CRAM-MD5) or authorization DN
(DIGEST-MD5) is the -D option on the z/VM LDAP operation utilities. See z/VM:

o=lotus

cn=jon,o=lotus
uid=USER1
userpassword=pw1

cn=tim,o=lotus
uid=USER2
userpassword=pw2

cn=karen,o=lotus
uid=USER3
uid=USER4
userpassword=pw3

cn=matt,o=IBM
uid=USER4
userpassword=pw4

cn=steve,o=IBM
uid=USER5
userpassword=pw5

cn=jay,o=IBM
uid=USER1
userpassword=secret

o=IBM

File
LDBM

Figure 19. CRAM-MD5 and DIGEST-MD5 authentication example

Chapter 6. CRAM-MD5 and DIGEST-MD5 authentication 83

TCP/IP LDAP Administration Guide for more details on the LDAP operation utilities.
This table assumes that native authentication is not turned on under the subtrees:
o=lotus and o=IBM.

Table 13. Behavior of CRAM-MD5 and DIGEST-MD5 authentication in example

Username

BindDN (CRAM-MD5) or
authorization DN
(DIGEST-MD5) Password Behavior

USER2 pw2 Bind is successful to cn=tim,o=lotus

USER2 cn=tim,o=lotus pw2 Bind is successful to cn=tim,o=lotus

USER2 cn=jon,o=lotus pw2 Bind is not successful because the bindDN
(CRAM-MD5) or authorization DN (DIGEST-MD5)
cn=jon,o=lotus does not equal the username DN
cn=tim,o=lotus

USER1 pw1 Bind is not successful, because there are multiple
entries with the same username value:
cn=jon,o=lotus and cn=jay,o=IBM

USER1 cn=jay,o=IBM secret Bind is successful to cn=jay,o=IBM because the
username DN cn=jay,o=IBM equals the bindDN
(CRAM-MD5) or authorization DN (DIGEST-MD5)
cn=jay,o=IBM

USER1 cn=jon,o=lotus pw1 Bind is successful to cn=jon,o=lotus because the
username DN cn=jon,o=lotus equals the bindDN
(CRAM-MD5) or authorization DN (DIGEST-MD5)
cn=jon,o=lotus

USER3 pw3 Bind is successful to cn=karen,o=lotus

USER4 cn=karen,o=lotus pw3 Bind is successful to cn=karen,o=lotus

USER4 cn=matt,o=IBM pw4 Bind is successful to cn=matt,o=IBM

USER3 cn=karen,o=lotus bad Bind is not successful to username DN
cn=karen,o=lotus and bindDN (CRAM-MD5) or
authorization DN (DIGEST-MD5) cn=karen,o=lotus
because the password is incorrect.

USER5 cn=nothere,o=lotus pw5 Bind is not successful because the username DN
cn=steve,o=IBM does not equal the non-existent
bindDN (CRAM-MD5) or authorization DN
(DIGEST-MD5) cn=nothere,o=lotus

BAD pw1 Bind is not successful because a uid value equal to
BAD was not found in any of the entries in the LDBM
backend.

84 z/VM: TCP/IP LDAP Administration Guide

Chapter 7. Static, dynamic, and nested groups

The LDAP server supports group definitions. These group definitions allow for a
collection of names to be easily associated for access control checking or in
application-specific uses such as a mailing list. See Chapter 8, “Using access
control” for additional information on access control checking.

A search request specifying the ibm-allMembers or ibm-allGroups attribute returns
group membership information for just the backend containing the base entry.
Access checking is performed for the member and uniqueMember attributes when
obtaining the group membership information. Additional access checking is
performed on any of the attributes contained in a dynamic group URL search filter
on the memberURL attribute. Access checking is not performed on the
memberURL and ibm-memberGroup attributes themselves.

Static groups
A static group is defined as a group where the members are defined individually.
The accessGroup, accessRole, groupOfNames, and ibm-staticGroup object
classes each use a multi-valued attribute called member to define a list of
distinguished names (DNs) that belong to the static group. The
groupOfUniqueNames object class uses a multi-valued attribute called
uniqueMember to define a list of distinguished names (DNs) that belong to the
static group. The uniqueMember attribute type is treated as a distinguished name
and not as a distinguished name with an optional unique identifier.

These attributes and object classes are always in the LDAP server schema. Except
for the groupOfNames and groupOfUniqueNames object classes, they cannot be
modified. The groupOfNames and groupOfUniqueNames object classes can be
modified in limited ways, as described in “Changing the initial schema” on page 31.
One modification you may consider making in these two object classes is to move
the member or uniqueMember attribute from the MUST list to the MAY list. This
will allow static group entries using these object classes to be created without any
members and also allow all the members to be deleted from existing entries.

A typical static group entry is as follows:
dn: cn=ldap_team_static,o=endicott
objectclass: groupOfNames
cn: ldap_team_static
member: cn=jon,o=endicott
member: cn=ken,o=endicott
member: cn=jay,o=endicott

Dynamic groups
A dynamic group is defined as a group in which membership is determined using
one or more LDAP search expressions. Each time a dynamic group is used by the
LDAP server, a user’s membership in the group is decided by determining if the
user entry matches any of the search expressions. The ibm-dynamicGroup and
groupOfURLs object classes each use the multi-valued attribute called
memberURL to define the LDAP search expression. These object classes and
attribute are always in the LDAP server schema and cannot be modified.

© Copyright IBM Corp. 2007, 2009 85

Dynamic groups allow the group administrator to define membership in terms of
attributes and allow the directory itself to determine who is or is not a member of
the group. For example, members do not need to be manually added or deleted
when a person moves to a different project or location.

Alias and referral entries are not processed during the group membership search.

The following simplified LDAP URL syntax must be used as the value of
memberURL attribute to specify the dynamic group search expression.
ldap:///baseDN[??[searchScope][?searchFilter]]

where

baseDN
Specifies the DN of the entry from which the search begins in the directory.
The dynamic URL is not used if the base entry is not within the same
backend as the dynamic group entry. This parameter is required.

searchScope
Specifies the extent of the search. The default scope is base.

base Returns information only about the baseDN specified in the URL.

one Returns information about entries one level below the baseDN
specified in the URL. It does not include the baseDN.

sub Returns information about entries at all levels below and including
the baseDN.

searchFilter
Is the filter that you want applied to the entries within the scope of the
search. See ldapsearch in z/VM: TCP/IP User’s Guide for additional
information on LDAP search filters. The default is ″objectclass=*″.

Note: As the format above suggests, the host name must not be present in the
syntax. The remaining parameters are just like the normal LDAP URL syntax,
defined in RFC 2255: The LDAP URL Format (except there is no support for
extensions in the URL). Each parameter field must be separated by a ?,
even if no parameter is specified. Normally, a list of attributes to return would
have been included between the baseDN and searchScope. An add or
modify operation of a dynamic group entry fails if it contains a memberURL
attribute that is not in the correct format. This prevents introducing an
improperly formatted memberURL attribute into the LDAP server.

An entry is considered to be a member of the dynamic group if it falls within the
search scope and matches the search filter. Alias entries and referral entries are
treated as normal entries during the group membership search; no alias
dereferencing or referral processing is performed.

A typical dynamic group entry is the following:
dn: cn=ldap_team_dynamic,o=endicott
objectclass: groupOfURLs
cn: ldap_team_dynamic
memberURL: ldap:///o=endicott??sub?(ibm-group=ldapTeam)

Dynamic group search filter examples:

A single entry in which the scope defaults to base and the filter defaults to
″objectclass=*″:

86 z/VM: TCP/IP LDAP Administration Guide

http://www.ietf.org/rfc/rfc2255.txt?number=2255

ldap:///cn=Ricardo,ou=Endicott,o=ibm,c=us

The ″In Flight Systems″ team with a scope of one-level and the filter defaults to
″objectclass=*″:
ldap:///ou=In Flight Systems,ou=Endicott,o=ibm,c=us??one

A subtree search for all the support staff in Endicott:
ldap:///ou=Endicott,o=ibm,c=us??sub?title=*Support

A subtree search for all the Garcias or Nguyens whose first name begins with an
″A″:
ldap:///o=ibm,c=us??sub?(&(|(sn=Garcia)(sn=Nguyen))(cn=A*))

A search filter that includes escaped percent signs, question marks and spaces in
the base DN (o=deltawing infosystems) and filter ((&(percent=10
%)(description=huh?))):
ldap:///o=deltawing%20infosystems,c=au??sub?(&(percent=10%25)(description=huh%3f))

Nested groups
A nested group is defined as a group that references other group entries, which can
be static, dynamic, or nested groups. The ibm-nestedGroup object class uses the
multi-valued attribute called ibm-memberGroup to indicate the DNs of the groups
that are referenced by the nested group. This object class and attribute are always
in the LDAP server schema and cannot be modified. Nested groups allow LDAP
administrators to construct and display group hierarchies that describe both direct
and indirect group memberships. A group referenced within the nested group is
ignored if it is not in the same backend as the nested group. The group hierarchy
established by a nested group cannot loop back to itself. The LDBM backend
rejects an add or modify operation of a nested group entry if it results in a loop.

Note: The ibm-nestedGroup object class is an AUXILARY object class and also
requires a STRUCTURAL object class.

A typical nested group entry is as follows:
dn: cn=ldap_team_nested,o=endicott
objectclass: container
objectclass: ibm-nestedGroup
cn: ldap_team_nested
ibm-memberGroup: cn=ldap_team_static,o=endicott
ibm-memberGroup: cn=ldap_team_dynamic,o=endicott
ibm-memberGroup: cn=ldaptest_team_nested,o=endicott

Determining group membership
The members of a group entry are determined depending on the type of group.
Note that a group can be multiple types (for instance, both dynamic and static).

1. static group: the values of the member attribute of the group entry if the object
class of the group entry is accessGroup, accessRole, groupOfNames, or
ibm-staticGroup, or the values of the uniqueMember attribute if the object
class is groupOfUniqueNames.

2. dynamic group: the DN of each entry in this LDBM backend that matches the
scope and search filter contained in one of the values of the memberURL
attribute of the group entry. Dynamic group membership is the union of all
search expressions that are present on each of the individual memberURL
attribute values even if the search expressions are contradictory, such as

Chapter 7. Static, dynamic, and nested groups 87

ldap:///o=ibm??sub?cn=bob and ldap:///o=ibm??sub?(!(cn=bob)). A dynamic
search filter is ignored if the base in the search filter is not in the same LDBM
backend as the dynamic group.

3. nested group: the members of each static, dynamic, or nested group for each
value of the ibm-memberGroup attribute in the nested group entry.

Zero-length values are ignored for the member, uniqueMember and
ibm-memberGroup attributes.

Displaying group membership
Two operational attributes can be used for querying aggregate group membership.
For a given group entry, the ibm-allMembers attribute enumerates the entire set of
group membership, including static, dynamic, and nested members as described by
the nested group hierarchy. For a given user entry, the ibm-allGroups attribute
enumerates the entire set of groups within the same backend as the user entry to
which that user has membership, including ancestor groups from nested group
hierarchy. As with all operational attributes, they are only returned if explicitly
requested and can not be specified on a search filter.

The ibm-allGroups and ibm-allMembers search and comparison operations are
only supported on entries within the LDBM backend. These operations are not
supported against users or groups that are present within the SDBM backend.

ACL restrictions on displaying group membership
The following ACL restrictions only apply when attempting to query
ibm-allMembers or ibm-allGroups operational attributes. These rules do not apply
when groups are gathered from all the backends that are participating in group
gathering at authentication time. The entries and attributes used to evaluate
ibm-allMembers and ibm-allGroups have ACL restrictions, against which the
bound DN has to be checked. The members of a group are determined from three
sources:

1. For static groups, the bound DN must have read access on the member or
uniqueMember attribute if it is performing an ibm-allMembers or
ibm-allGroups search operation, or compare access if performing a comparison
operation. The member and uniqueMember attributes are in the normal
access class.

2. For dynamic groups, the bound DN must have search access on all of the
attributes that are present in the dynamic group filter for any of the DNs that are
returned. The ACL access to the memberURL attribute does not matter when
resolving ibm-allMembers or ibm-allGroups attributes.

3. For nested groups, there is no restriction on using the ibm-memberGroup
attribute, but the restrictions described above apply to the groups referenced in
the nested group entry. A referenced group is ignored if it is not in the same
LDBM backend as the nested group.

Specifying ibm-allMembers or ibm-allGroups in a search or compare operation
also requires that the bound DN have read or compare access to the
ibm-allMembers or ibm-allGroups attribute. Note that the ibm-allMembers and
ibm-allGroups attributes are in the system access class.

For more information about access control permissions, see Chapter 8, “Using
access control.”

88 z/VM: TCP/IP LDAP Administration Guide

ACL restrictions on group gathering
At authentication time, a list is created containing the static, dynamic, and nested
groups of which the binding user is a member. No ACL processing is done when
reading group entries for group gathering because it is not possible to know what
access rights the binding user will have to any of the attributes or subtrees in the
directory until all the groups have been fully determined.

Group examples

Examples of adding, modifying, and deleting group entries
Adding group entries: This example creates static group entries using the
accessGroup, groupOfUniqueNames, and groupOfNames object classes.
ldapadd -h 127.0.0.1 -D "cn=admin" -w xxxx -f staticGrps.ldif

Where staticGrps.ldif contains:
dn: cn=group1, o=Your Company
objectclass: accessGroup
cn: group1
member: cn=bob, o=Your Company
member: cn=lisa, o=Your Company
member: cn=chris, cn=bob, o=Your Company
member: cn=john, cn=bob, o=Your Company

dn: cn=group2, o=Your Company
objectclass: groupOfUniqueNames
cn: group2
uniquemember: cn=tom, o=Your Company
uniquemember: cn=dan, o=Your Company
uniquemember: cn=sam, o=Your Company
uniquemember: cn=kevin, o=Your Company

dn: cn=group3, o=Your Company
objectclass: groupOfNames
cn: group3
member: cn=david, o=Your Company
member: cn=jake, o=Your Company
member: cn=scott, o=Your Company
member: cn=eric, o=Your Company

This example creates a dynamic group entry that has an object class of
groupOfURLs:
ldapadd -h 127.0.0.1 -D "cn=admin" -w xxxx -f dynamicGrp.ldif

Where dynamicGrp.ldif contains:
dn: cn=dynamic_team,o=Your Company
objectclass: groupOfUrls
cn: dynamic_team
memberurl: ldap:///o=Your Company??sub?(employeeType=ldapTeam)

This example creates a nested group entry with an object class of
ibm-nestedGroup that references cn=dynamic_team,o=Your Company and
cn=group1,o=Your Company.
ldapadd -h 127.0.0.1 -D "cn=admin" -w xxxx -f nestedGrp.ldif

Where nestedGrp.ldif contains:
dn: cn=nested_grp,o=Your Company
objectclass: ibm-nestedGroup
objectclass: person

Chapter 7. Static, dynamic, and nested groups 89

cn: nested_grp
sn: group
ibm-memberGroup: cn=dynamic_team,o=Your Company
ibm-memberGroup: cn=group1,o=Your Company

Modifying group entries: In order to add a member to a static group, add the
user’s distinguished name as an additional value for the member or
uniqueMember attribute. Following is an example:
ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modStaticGrp.ldif

Where modStaticGrp.ldif contains:
dn: cn=group1, o=Your Company
changetype: modify
add: member
member: cn=jeff, cn=tim, o=Your Company

dn: cn=group2, o=Your Company
changetype: modify
add: uniqueMember
uniqueMember: cn=joe,o=Your Company

In order to remove a member from a static group, remove the user’s distinguished
name from the set of member or uniqueMember attribute values in the static
group entry. Following is an example:
ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modStaticGrp.ldif

Where modStaticGrp.ldif contains:
dn: cn=group1, o=Your Company
changetype: modify
delete: member
member: cn=jeff, cn=tim, o=Your Company

dn: cn=group2, o=Your Company
changetype: modify
delete: uniqueMember
uniqueMember: cn=joe,o=Your Company

In order to add a new search expression to a dynamic group, add the LDAP URL
search expression as a value of the memberURL attribute. Following is an
example:
ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modDynamicGrp.ldif

Where modDynamicGrp.ldif contains:
dn: cn=dynamic_team, o=Your Company
changetype: modify
add: memberURL
memberURL: ldap:///o=Your Company??sub?(employeeType=javaTeam)

In order to remove a search expression from a dynamic group entry, the
memberURL attribute value containing the search expression must be removed
from the group entry. Following is an example:
ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modDynamicGrp.ldif

Where modDynamicGrp.ldif contains:
dn: cn=dynamic_team, o=Your Company
changetype: modify
delete: memberURL
memberURL: ldap:///o=Your Company??sub?(employeeType=javaTeam)

90 z/VM: TCP/IP LDAP Administration Guide

In order to add a new group reference to an existing nested group entry, add the
new group’s DN as a value of the ibm-memberGroup attribute. Following is an
example:
ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modNestedGrp.ldif

Where modNestedGrp.ldif contains:
dn: cn=nested_grp, o=Your Company
changetype: modify
add: ibm-memberGroup
ibm-memberGroup: cn=group2,o=Your Company

In order to remove a group reference entry from an existing nested group entry, the
ibm-memberGroup attribute value containing the group reference DN must be
deleted. Following is an example:
ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modNestedGrp.ldif

Where modNestedGrp.ldif contains:
dn: cn=nested_grp, o=Your Company
changetype: modify
delete: ibm-memberGroup
ibm-memberGroup: cn=group2,o=Your Company

Deleting group entries: In order to delete a static, dynamic, or nested group entry,
delete the directory entry that represents the group. The ldapdelete command can
be used to perform this delete operation.

This example deletes the static, dynamic, and nested group entries that were
created in the above examples:
ldapdelete -h 127.0.0.1 -D "cn=admin" -w xxx -f deleteGrp.list

Where deleteGrp.list contains:
cn=nested_grp,o=Your Company
cn=group1,o=Your Company
cn=group2,o=Your Company
cn=group3,o=Your Company
cn=dynamic_team,o=Your Company

Examples of querying group membership

u3, u4

u1, u2

g3g2

u5

g6g5g4

g1

u3

The entries below are used in the following examples:

Figure 20. Group hierarchy and membership for the examples

Chapter 7. Static, dynamic, and nested groups 91

dn: o=ibm
objectclass: organization
aclEntry: group:CN=ANYBODY:normal:rsc:system:rsc
aclPropagate: TRUE
o: ibm

dn: cn=g1,o=ibm
objectclass: container
objectclass: ibm-nestedGroup
cn: g1
ibm-memberGroup: cn=g2,o=ibm
ibm-memberGroup: cn=g3,o=ibm
aclEntry: group:CN=ANYBODY:normal:rsc:system:rsc

dn: cn=g2,o=ibm
objectclass: accessGroup
cn: g2
member: cn=u1,o=ibm
member: cn=u2,o=ibm
aclEntry: group:CN=ANYBODY:normal:rsc:system:rsc
aclEntry: access-id:cn=u1,o=ibm:normal:rsc:system:rsc
aclEntry: access-id:cn=u2,o=ibm:normal:rsc:system:rsc:at.member:deny:rsc

dn: cn=g3,o=ibm
objectclass: container
objectclass: ibm-nestedGroup
cn: g3
ibm-memberGroup: cn=g4,o=ibm
ibm-memberGroup: cn=g5,o=ibm
ibm-memberGroup: cn=g6,o=ibm

dn: cn=g4,o=ibm
objectclass: accessGroup
cn: g4
aclEntry: group:CN=ANYBODY:normal:rsc:system:rsc
aclEntry: access-id:cn=u4,o=ibm:normal:rsc:system:rsc:at.member:deny:c
member: cn=u5,o=ibm

dn: cn=g5,o=ibm
objectclass: container
objectclass: ibm-dynamicGroup
cn: g5
memberURL: ldap:///o=ibm??sub?(|(cn=u3)(cn=u4))
aclEntry: group:cn=ANYBODY:normal:rsc:system:rsc
aclEntry: access-id:cn=u3,o=ibm:normal:rsc:system:rsc:at.ibm-allMembers:deny:rs:
at.ibm-allMembers:grant:c

dn: cn=g6,o=ibm
objectclass: container
objectclass: ibm-dynamicGroup
cn: g6
memberURL: ldap:///o=ibm??sub?(cn=*3)

dn: cn=u1,o=ibm
objectclass: person
cn: u1
sn: user
userpassword: secret1

dn: cn=u2,o=ibm
objectclass: person
cn: u2
sn: user
userpassword: secret2

dn: cn=u3,o=ibm
objectclass: person
aclEntry: access-id:cn=u1,o=ibm:normal:rsc:system:rsc:at.cn:deny:s
aclEntry: access-id:cn=u2,o=ibm:normal:rsc:system:rsc:at.ibm-allGroups:deny:r
aclEntry: group:cn=ANYBODY:normal:rsc:system:rsc
cn: u3
sn: user
userpassword: secret3

92 z/VM: TCP/IP LDAP Administration Guide

dn: cn=u4,o=ibm
objectclass: person
aclentry: group:cn=ANYBODY:normal:rsc:system:rsc
aclentry: access-id:cn=u3,o=ibm:normal:rsc:system:rsc:at.ibm-allGroups:deny:r
cn: u4
sn: user
userpassword: secret4

dn: cn=u5,o=ibm
objectclass: person
cn: u5
sn: user
userpassword: secret5

dn: cn=u6,o=ibm
objectclass: person
cn: u6
sn: user
userpassword: secret6

Note: The ibm-allMembers and ibm-allGroups attributes are system class
attributes. The member and cn attributes are normal class attributes.

ibm-allGroups and ibm-allMembers search and comparison examples:

Example 1: This example shows an ibm-allMembers attribute search on a static
group entry.
ldapsearch –L –D "cn=u6,o=ibm" –w secret6 –b "cn=g4,o=ibm" "objectclass=*" ibm-allMembers

dn: cn=g4,o=ibm
ibm-allmembers: cn=u5,o=ibm

Access checking done for cn=u6,o=ibm:

1. Read access to the ibm-allMembers attribute in cn=g4,o=ibm.

2. Read access to the member attribute in cn=g4,o=ibm.

Example 2: This example shows an ibm-allMembers attribute search on a
dynamic group entry.
ldapsearch –L –D "cn=u6,o=ibm" –w secret6 –b "cn=g5,o=ibm" "objectclass=*" ibm-allMembers

dn: cn=g5,o=ibm
ibm-allmembers: cn=u3,o=ibm
ibm-allmembers: cn=u4,o=ibm

Access checking done for cn=u6,o=ibm:

1. Read access to the ibm-allMembers attribute in cn=g5,o=ibm.

2. Search access to the cn attribute in the returned entries, cn=u3,o=ibm and
cn=u4,o=ibm, from the search filter specified in the memberURL attribute.

Note: memberURL attribute access rights do not matter.

Example 3: This example shows an ibm-allMembers attribute search on a nested
group entry.
ldapsearch –L –D "cn=u6,o=ibm" –w secret6 –b "cn=g3,o=ibm" "objectclass=*" ibm-allMembers

dn: cn=g3,o=ibm
ibm-allmembers: cn=g3,o=ibm
ibm-allmembers: cn=u3,o=ibm
ibm-allmembers: cn=u4,o=ibm
ibm-allmembers: cn=u5,o=ibm

Access checking done for cn=u6,o=ibm:

Chapter 7. Static, dynamic, and nested groups 93

1. Read access to the ibm-allMembers attribute in cn=g3,o=ibm.

2. Read access to the member attribute in cn=g4,o=ibm.

3. Search access to the cn attribute in the returned entries, cn=u3,o=ibm and
cn=u4,o=ibm, from the search filter specified in the memberURL attribute of
cn=g5,o=ibm.

4. Search access to the cn attribute in the returned entries, cn=u3,o=ibm and
cn=g3,o=ibm, from the search filter specified in the memberURL attribute of
cn=g6,o=ibm.

Note: Since cn=u3,o=ibm has already been added as an ibm-allMembers
attribute value, a duplicate value will not be added.

Note: ibm-memberGroup access rights do not matter.

Example 4: This example shows an ibm-allMembers attribute search on a
dynamic group entry when the bound user is not granted read access to the
ibm-allMembers attribute.
ldapsearch -L -D "cn=u3,o=ibm" -w secret3 -b "cn=g5,o=ibm" "objectclass=*" ibm-allmembers

dn: cn=g5,o=ibm

Access checking done for cn=u3,o=ibm:

1. Read access to the ibm-allMembers attribute in cn=g5,o=ibm has been denied.
Therefore, no ibm-allMembers attribute values will be added.

Example 5: This example shows an ibm-allMembers attribute search on a static
group entry when the bound user does not have read authority on the member
attribute.
ldapsearch -L -D "cn=u2,o=ibm" -w secret2 -b "cn=g2,o=ibm" "objectclass=*" ibm-allmembers

dn: cn=g2,o=ibm

Access checking done for cn=u2,o=ibm:

1. Read access to the ibm-allMembers attribute in cn=g2,o=ibm.

2. Read access to the member attribute in cn=g2,o=ibm has been denied.
Therefore, the member attribute value will not be added as an ibm-allMembers
attribute value.

Example 6: This example shows an ibm-allMembers attribute search on a
dynamic group entry when the bound user does not have search authority in the
entries that are to be returned for the attributes that are specified in the dynamic
group filter.
ldapsearch -L -D "cn=u1,o=ibm" -w secret1 -b "cn=g5,o=ibm" "objectclass=*" ibm-allmembers

dn: cn=g5,o=ibm
ibm-allmembers: cn=u4,o=ibm

Access checking done for cn=u1,o=ibm:

1. Read access to the ibm-allMembers attribute in cn=g5,o=ibm.

2. Search access to the cn attribute in the returned entries, cn=u3,o=ibm and
cn=u4,o=ibm, from the search filter specified in the memberURL attribute.
However, search access has been denied on the cn attribute of cn=u3,o=ibm
therefore it is not added as an ibm-allMembers attribute value.

94 z/VM: TCP/IP LDAP Administration Guide

Example 7: This example shows an ibm-allMembers comparison operation on a
dynamic group entry.
ldapcompare -D "cn=u3,o=ibm" -w secret3 "cn=g5,o=ibm" "ibm-allmembers=cn=u3,o=ibm"
ldap_compare: Compare true

Access checking done for cn=u3,o=ibm:

1. Compare access to the ibm-allMembers attribute in cn=g5,o=ibm.

2. Search access to the cn attribute on the returned entries, cn=u3,o=ibm and
cn=u4,o=ibm, from the search filter specified in the memberURL attribute.

Example 8: This example shows an ibm-allGroups attribute search where the user
belongs to dynamic and nested group entries.
ldapsearch -L -D "cn=u6,o=ibm" -w secret6 -b "cn=u4,o=ibm" "objectclass=*" ibm-allGroups

dn: cn=u4,o=ibm
ibm-allgroups: cn=g5,o=ibm
ibm-allgroups: cn=g3,o=ibm
ibm-allgroups: cn=g1,o=ibm

Access checking done for cn=u6,o=ibm:

1. Read access to the ibm-allGroups attribute in cn=u4,o=ibm.

2. Search access on the cn attribute in cn=u4,o=ibm from the search filter specified
in the memberURL attribute in cn=g5,o=ibm.

Since cn=g3,o=ibm has cn=g5,o=ibm as an ibm-memberGroup attribute value,
cn=g3,o=ibm is added as an ibm-allGroups attribute also. cn=g1,o=ibm has
cn=g3,o=ibm as an ibm-memberGroup value, therefore cn=g1,o=ibm is also added
as an ibm-allGroups attribute value.

Example 9: This example shows an ibm-allGroups attribute search where the user
belongs to static and nested group entries.
ldapsearch -L -D "cn=u1,o=ibm" -w secret1 -b "cn=u2,o=ibm" "objectclass=*" ibm-allGroups

dn: cn=u2,o=ibm
ibm-allgroups: cn=g2,o=ibm
ibm-allgroups: cn=g1,o=ibm

Access checking done for cn=u1,o=ibm:

1. Read access to the ibm-allGroups attribute in cn=u2,o=ibm.

2. Read access to the member attribute in cn=g2,o=ibm.

Since cn=g1,o=ibm has an ibm-memberGroup attribute value of cn=g2,o=ibm,
cn=g1,o=ibm is added as an ibm-allGroups attribute value.

Example 10: This example shows an ibm-allGroups attribute search where the
user being searched belongs to static and nested group entries. The bound user
has read authority to the ibm-allGroups attribute of the user being searched, but
does not have read authority on the member attribute in the static group entry.
ldapsearch -L -D "cn=u2,o=ibm" -w secret2 -b "cn=u2,o=ibm" "objectclass=*" ibm-allGroups

dn: cn=u2,o=ibm

Access checking done for cn=u2,o=ibm:

1. Read access to the ibm-allGroups attribute in cn=u2,o=ibm.

2. Read access to the member attribute of cn=g2,o=ibm is denied. Therefore,
cn=g2,o=ibm is not added as an ibm-allGroups attribute value.

Chapter 7. Static, dynamic, and nested groups 95

Example 11: This example shows an ibm-allGroups search where the bound user
does not have read authority on the ibm-allGroups attribute.
ldapsearch -L -D "cn=u3,o=ibm" -w secret3 -b "cn=u4,o=ibm" "objectclass=*" ibm-allGroups

dn: cn=u4,o=ibm

Access checking done for cn=u3,o=ibm:

1. Read access to the ibm-allGroups attribute in cn=u4,o=ibm is denied.
Therefore, no ibm-allGroups attribute values are added.

Example 12: This example shows an ibm-allGroups comparison operation where
the bound user is allowed to determine that a user belongs to a nested group entry.
ldapcompare -D "cn=u2,o=ibm" -w secret2 "cn=u3,o=ibm" "ibm-allGroups=cn=g1,o=ibm"

ldap_compare: Compare true

Access checking done for cn=u2,o=ibm:

1. Compare access to the ibm-allGroups attribute in cn=u3,o=ibm.

2. Search access to the cn attribute of cn=u3,o=ibm is granted from the search
filter specified in the memberURL attribute in cn=g5,o=ibm.

Since cn=g3,o=ibm has cn=g5,o=ibm as an ibm-memberGroup attribute value,
cn=g3,o=ibm is added as an ibm-allGroups attribute as well. cn=g1,o=group has
cn=g3,o=ibm as an ibm-memberGroup value, therefore cn=g1,o=group is also
added as an ibm-allGroups attribute value. Therefore, the compare operation will
return an LDAP_COMPARE_TRUE to the client application.

96 z/VM: TCP/IP LDAP Administration Guide

Chapter 8. Using access control

Access control of information in the LDAP server is specified by setting up Access
Control Lists (ACLs). LDBM or GDBM ACLs provide a means to protect information
stored in an LDAP directory. Administrators use ACLs to restrict access to different
portions of the directory, or specific directory entries. When using the LDBM or
GDBM backend, ACLs are created and managed using the ldap_add and
ldap_modify APIs.

ACLs are represented by a set of attributes which appear to be a part of the entry.
The attributes associated with access control, such as entryOwner,
ownerPropagate, aclEntry, and aclPropagate, are unusual in that they are
logically associated with each entry, but can have values which depend upon other
entries higher in the directory hierarchy. Depending upon how they are established,
these attribute values can be explicit to an entry, or inherited from an ancestor
entry.

Use of LDAP’s SDBM backend allows a user to be authenticated to the directory
namespace using the RACF ID and password. The RACF identity becomes
associated with the user’s RACF-style distinguished name that was used on the
LDAP bind operation. It is then possible to set up ACLs for entries managed by the
LDBM or GDBM backend using RACF-style user and group DNs. This controls
access to LDBM or GDBM database directory entries using the RACF user or group
identities.

The LDAP server schema entry also has an ACL that can be set to control access
to the schema entry.

Access control attributes
Access to LDAP directory entries and attributes is defined by Access Control Lists
(ACLs). Each entry in the directory contains a special set of attributes which
describe who is allowed to access information within that entry. Table 14 shows the
set of attributes which are related to access control. More in-depth information
about each attribute is given following the table.

It is possible to specify access control settings for individual attribute types. This is
called attribute-level access control. Also, it is possible to explicitly deny access to
information.

Table 14. ACL and entry owner attributes

ACL attributes

aclEntry This is a multi-valued attribute that contains the names and
permissions associated with those names that have access to
information in the directory entry (or the entry along with the subtree
of information below the entry, depending on the setting of the
aclPropagate attribute).

aclPropagate This is a single-valued boolean attribute which indicates whether the
aclEntry information applies only to the directory entry it is
associated with or to the entire subtree of information including and
below the directory entry it is associated with. Note that propagation
does not apply to entries that have an explicit aclEntry defined for
the entry and that propagation stops at the next propagating ACL
(aclPropagate=TRUE) that is encountered in the directory subtree.

© Copyright IBM Corp. 2007, 2009 97

Table 14. ACL and entry owner attributes (continued)

aclSource This is a single-valued attribute that is managed by the LDAP server
and cannot be changed by the ldapmodify command. This attribute,
accessible for any directory entry, indicates the distinguished name
of the entry that holds the ACL that applies to the entry. This
attribute is useful in determining which propagating ACL is used to
control access to information in the directory entry.

Entry owner attributes

entryOwner This is a multi-valued attribute that contains the distinguished names
of users or groups that are considered owners of the directory entry
(or the entry along with the subtree of information below the entry,
depending on the setting of the ownerPropagate attribute).

ownerPropagate This is a single-valued boolean attribute which indicates whether the
entryOwner information applies only to the directory entry it is
associated with or to the entire subtree of information including and
below the directory entry it is associated with. Note that propagation
does not apply to entries that have an explicit entryOwner defined
for the entry and that propagation stops at the next propagating
entryOwner (ownerPropagate=TRUE) that is encountered in the
directory subtree.

ownerSource This is a single-valued attribute that is managed by the LDAP server
and cannot be changed by the ldapmodify command. This attribute
indicates the distinguished name of the entry that holds the
entryOwner that applies to the entry. This attribute is useful in
determining which propagating entryOwner is used to control
access to information in the directory entry.

aclEntry attribute
aclEntry is a multi-valued attribute which contains information pertaining to the
access allowed to the entry and each of its attributes. aclEntry lists the following
types of information:
v Who has rights to the entry (scope of the protection). Also called the subject.
v What specific attributes and classes of attributes (attribute access classes) that

the subject has access to.
v What rights the subject has (permissions to specific attributes and classes of

attributes).

Syntax
Following is the aclEntry attribute value syntax:
[access-id:|group:|role:]subject_DN[granted_rights]

The subject_DN is any valid DN which represents the object (entry) to which
privileges are being granted. The DN ends when the first granted rights keyword is
detected.

The granted_rights is specified as follows where object_rights_list is one or more
elements of the set [a|d], and attr_rights_list is one or more elements of the set
[r|w|s|c].
[:object:[grant:|deny:]object_rights_list] [:normal:[grant:|deny:]attr_rights_list]
[:sensitive:[grant:|deny:]attr_rights_list] [:critical:[grant:|deny:]attr_rights_list]
[:restricted:[grant:|deny:]attr_rights_list] [:system:[grant:|deny:]attr_rights_list]
[:at.attr_name:[grant:|deny:]attr_rights_list]

Multiple specifications for the same access class or attribute type within the same
aclEntry attribute value will be merged into a single specification. For example:

98 z/VM: TCP/IP LDAP Administration Guide

group:cn=Anybody:normal:rs:system:rsc:normal:c:normal:deny:w

will result this merged access list
group:cn=Anybody:normal:rsc:normal:deny:w:system:rsc

Scope of protection
The scope of the protection is based on the following three types of privilege
attributes:

access-id
The distinguished name of an entry being granted access.

group The distinguished name of the group entry being granted access.

role The distinguished name of the group entry being granted access.

Access control groups can be either static, dynamic, or nested groups. The
following object classes are evaluated as group entries for LDBM:
ibm-staticGroup, groupOfNames, groupOfUniqueNames, accessRole,
accessGroup, ibm-dynamicGroup, groupOfUrls, and ibm-nestedGroup. See
Chapter 7, “Static, dynamic, and nested groups” for additional information on static,
dynamic, and nested groups.

Privilege attributes take the form of type:name where type refers to either
access-id, group, or role and name is the distinguished name.

Note: The distinguished name that is used need not be the name of an entry in the
directory. The distinguished name is the name that represents the user that
has authenticated to the directory server.

The type: portion of this clause is optional.

The access control implementation supports several “pseudo-DNs”. These are used
to refer to large numbers of subject DNs which, at bind time, share a common
characteristic in relation to either the operation being performed or the target object
on which the operation is being performed. Currently, three pseudo DNs are
defined:
group:cn=anybody
group:cn=authenticated
access-id:cn=this

The group:cn=anybody refers to all subjects, including those that are
unauthenticated (considered anonymous users). All users belong to this group
automatically. The group:cn=authenticated refers to any DN which has been
authenticated to the directory. The method of authentication is not considered. The
access-id:cn=this refers to the bind DN which matches the target object’s DN on
which the operation is performed.

Examples

In this example, the DN type is access-id and the DN itself is cn=personA,
ou=deptXYZ, o=IBM, c=US.
access-id:cn=personA, ou=deptXYZ, o=IBM, c=US

In this example, the DN type is group and the DN itself is cn=deptXYZRegs, o=IBM,
c=US.
group:cn=deptXYZRegs, o=IBM, c=US

Chapter 8. Using access control 99

This is an example of how to use a RACF identity established with SDBM in an
ACL.
access-id:racfid=YourID,profileType=user
group:racfid=YourGroup,profileType=group

Attribute access classes
Attributes requiring similar permission for access are grouped together in classes.
Attributes are assigned to an attribute access class within the schema definitions.
The IBMAttributeTypes attribute in the LDAP server schema entry holds the
attribute type’s access class. The three attribute access classes are:
v normal
v sensitive
v critical

Each of these attribute access classes is discrete. If a user has write permission to
sensitive attributes, then the user does not automatically have write permission to
normal attributes. This permission must be explicitly defined.

The default attribute access class for an attribute is normal. By default, all users
have read access to normal attributes. There are two additional attribute access
classes used internally by LDAP for system attributes. These attribute access
classes are restricted and system. You can specify these access classes when
granting permissions in ACLs.

For example, a person’s name would typically be defined in the normal class.
Perhaps a social security number would be considered sensitive, and any
password information for the user would be considered critical. Following are some
example definitions excerpted from the LDAP server schema. Note that the attribute
userPassword is defined with access class critical.
attributetypes: (

2.5.4.49
NAME ('dn' 'distinguishedName')
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications
)

ibmattributetypes: (
2.5.4.49
ACCESS-CLASS normal
)

attributetypes: (
2.5.4.35
NAME 'userPassword'
DESC 'Defines the user password'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
USAGE userApplications
)

ibmattributetypes: (
2.5.4.35
ACCESS-CLASS critical
)

It is possible to specify access controls on individual attributes. However, when
defining schema an access class is always defined for the attribute type. If not
specified, that attribute type is defined to belong to the normal class.

Note: The restricted attributes are: aclEntry, aclPropagate, entryOwner, and
ownerPropagate. In order to update access control information, you must
have permissions to read and write these attributes. The system attributes

100 z/VM: TCP/IP LDAP Administration Guide

include aclSource and ownerSource and other attributes for which the
server controls the values. In order to update access control information, you
must have permission to read and write these attributes. If the system
keyword is not specified in an aclEntry attribute value, the system access
will be set to ’system:rsc’.

Access permissions
Following is the set of access permissions.

Table 15. Permissions which apply to an entire entry

Add Add an entry below this entry

Delete Delete this entry

Table 16. Permissions which apply to attribute access classes

Read Read attribute values

Write Write attribute values

Search Search filter can contain attribute type

Compare Compare attribute values

Following are some examples of valid aclEntry values:
access-id:cn=Tim, o=Your Company:normal:rwsc:sensitive:rsc:object:ad

role:cn=roleGroup, o=Your Company:object:ad:normal:rsc:sensitive:rsc

group:cn=group1, o=Your Company:system:csr:normal:sw

cn=Lisa, o=Your Company:normal:rwsc:sensitive:rwsc:critical:rwsc:restricted:rwsc:system:rwsc

cn=Ken, o=Your Company:normal:rsc

group:cn=group2,dc=yourcompany,dc=com:normal:rwsc:at.cn:deny:w:sensitive:grant:rsc

cn=Karen,dc=yourcompany,dc=com:at.cn:grant:rwsc:normal:deny:rwsc

cn=Mary,dc=yourcompany,dc=com:normal:rwsc:sensitive:rwsc:critical:deny:rwsc:at.userpassword:w

group:cn=anybody:normal:rsc

group:cn=authenticated:normal:rwsc:sensitive:rsc

access-id:cn=this:normal:rwsc:sensitive:rwsc:restricted:rwsc

See Access determination for information on how the aclEntry values are used to
determine access.

The aclEntry attribute values are defined as directory strings but contain a
distinguished name as one of the components of the attribute value. When
performing a search using one of these attributes, only the distinguished name is
used in the search filter and the value is normalized following the matching rules for
a distinguished name. Two aclEntry attributes are considered to be the same if
they have the same distinguished name.

aclPropagate attribute
Each entry with an explicit ACL has associated with it an aclPropagate attribute. By
default, the entry’s explicit ACL is inherited down the hierarchy tree, and its
aclPropagate attribute is set to TRUE. If set to FALSE, the explicit ACL for the
entry becomes an override, pertaining only to the particular entry. The
aclPropagate syntax is Boolean. See Propagating ACLs for more information.

Chapter 8. Using access control 101

aclSource attribute
Each entry has an associated aclSource. This reflects the DN with which the ACL
is associated. This attribute is kept and managed by the server, but may be
retrieved for administrative purposes. This attribute cannot be set, only retrieved.

The derivation of aclSource is further explained in Propagating ACLs.

entryOwner attribute
Each entry has an associated entryOwner. The entryOwner might be a user or a
group, similar to what is allowed within the aclEntry. However, the entryOwner
subject has certain privileges over the entry.

Entry owners are, in essence, the administrators for a particular entry. They have
full access on that particular entry, similar to the administrator DN. Note that the
administrator DN has full permission on every entry in the database. Each
entryOwner attribute value is a distinguished name. However, for compatibility with
previous releases, the distinguished name can be preceded with access-id:,
group:, or role:.

Note: The distinguished name that is used need not be the name of an entry in the
directory. The distinguished name is the name that represents the user that
has authenticated to the directory server.

Entry owners are not constrained by permissions given in the aclEntry. They have
complete access to any entry attribute, and can add and delete entries as desired.

Entry owners, the administrator DN, and users who have write permission for
restricted attributes are the only people who are allowed to change the attributes
related to access control. If a backend is defined as a peer or read-only replica,
only the administrator DN and the peerserver DN or masterserver DN can set the
access control attributes within the backend directory.

The entryOwner attribute values are defined as directory strings but contain a
distinguished name as one of the components of the attribute value. When
performing a search using one of these attributes, only the distinguished name is
used in the search filter and the value is normalized following the matching rules for
a distinguished name. Two entryOwner attributes are considered to be the same if
they have the same distinguished name.

ownerPropagate attribute
Owner propagation works exactly the same as ACL propagation. By default, owners
are inherited down the hierarchy tree, and their owner propagate attribute is set to
TRUE. If set to FALSE, the owner becomes an override, pertaining only to the
particular entry. The ownerPropagate syntax is boolean.

ownerSource attribute
Each entry also has an associated ownerSource. This reflects the DN with which
the owner values are associated. This attribute is kept and managed by the server,
but can be retrieved for administrative purposes. This attribute cannot be set, only
retrieved.

102 z/VM: TCP/IP LDAP Administration Guide

Initializing ACLs with LDBM
The LDBM backend adds an ACL to each suffix entry if no aclEntry value is
specified during the add of this entry. This improves performance of future ACL
modifications made to an ACL placed on the suffix entry. The ACL that is used is:
aclEntry: cn=anybody:normal:rsc:system:rsc
aclPropagate: TRUE

Similarly, if no entry owner is specified when the suffix entry is created, entryOwner
is added to the entry with a value set to the administrator DN, along with
ownerPropagate TRUE.

Default ACLs with LDBM
Every entry must have an ACL. If there is no ACL explicitly specified in the entry
and no parent entry is propagating its ACL, then a default ACL is assigned to the
entry. The default ACL is treated differently than a normal aclEntry value. The
default value cannot be deleted. If an aclEntry value is later added to the entry,
explicitly or by inheritance, the entire default aclEntry value is replaced. The LDAP
server sets the value of the aclSource attribute to ’default’ when the entry is using
the default ACL. The default ACL is:
aclEntry: group:CN=ANYBODY:normal:rsc:system:rsc

Similarly, every entry must have an entry owner. If none is specified or inherited, a
default entryOwner value set to the administrator DN is assigned to the entry. The
default value cannot be deleted. If an entryOwner value is later added to the entry,
explicitly or by inheritance, the entire default entryOwner value is replaced. The
LDAP server sets the value of the ownerSource attribute to ’default’ when the entry
is using the default owner.

Initializing ACLs with GDBM
When the LDAP sever is started with GDBM configured for the first time, the LDAP
server creates the change log suffix entry, cn=changelog. The suffix entry is created
with an aclEntry and entryOwner value that allows access only to the LDAP
administrator and propagates the aclEntry and entryOwner values. Only the
aclEntry and entryOwner attributes can be modified. Change log entries cannot be
modified to override the inherited ACL values from the change log suffix entry.

Initializing ACLs with schema entry
When the LDAP sever is started for the first time, the LDAP server creates the
LDAP server schema entry, cn=schema. The entry is created with the same initial
ACL as an LDBM suffix, which allows read access to anybody. Therefore, only the
LDAP administrator can update the schema. The aclEntry and entryOwner values
can be modified.

Access determination
The same distinguished name (DN) may be granted different access permissions to
an entry, from specific access permissions to the DN and from group memberships
(including the authenticated and anybody groups). The LDAP server uses the
following algorithm to determine which permissions to grant a DN based on the
values in the aclEntry attribute:

v if there is a specific value for the DN, the DN gets those permissions only

Chapter 8. Using access control 103

v else if there is a cn=this value and the DN is the distinguished name of the entry,
the DN gets those permissions only

v else if there are one or more group values that the DN is a member of, the DN
gets the union of the permissions for those groups

v else if there is a cn=authenticated value and the DN is authenticated to the
directory with an LDAP bind operation, the DN gets those permissions only

v else if there is a cn=anybody value, the DN gets those permissions only

v otherwise the DN gets no permissions

Each of the access permissions is discrete. One permission does not imply another.

When using attribute-level permissions or grant/deny support, the order of
evaluation of the separate permissions clauses is important. The access control
permissions clauses are evaluated in a precedence order, not in the order in which
they are found in the ACL entry value. There are four types of permissions settings:
access-class grant permissions, access-class deny permissions, attribute-level grant
permissions, and attribute-level deny permissions. The precedence for these types
of permissions is as follows (from highest precedence to lowest):

v attribute-level deny permissions

v attribute-level grant permissions

v access-class deny permissions

v access-class grant permissions

Using this precedence, a deny permission takes precedence over a grant
permission (for the same item specified) while attribute-level permissions take
precedence over access-class permissions.

Following are examples for permissions:

Example 1
aclEntry: group:cn=Anybody:normal:rsc

In this example, unauthenticated (anonymous) users have permission to read,
search and compare all attributes within the normal attribute access class. ACL
entry values for unauthenticated users use pseudoDN cn=Anybody.

Example 2
aclEntry: access-id:cn=personA,ou=deptXYZ,o=IBM,c=US:object:ad:normal:rwsc:sensitive:rwsc:critical:rsc

In this example, the user corresponding to cn=personA, ou=deptXYZ, o=IBM, c=US
has permission to add entries below the entry, to delete the entry, to read, write,
search and compare both normal and sensitive attributes, and to read, search and
compare critical attributes.

Example 3
aclEntry: group:cn=Authenticated:normal:rwsc:sensitive:rwsc

In this example, users who have authenticated to the directory where a specific
aclEntry value does not apply, will be allowed to read, write, search, and compare,
normal and sensitive attributes in the directory entry.

Example 4
aclEntry: cn=Tim,dc=yourcompany,dc=com:at.cn:deny:w:normal:rwsc

104 z/VM: TCP/IP LDAP Administration Guide

In this example, cn=Tim,dc=yourcompany,dc=com is granted read, write, search, and
compare to normal attributes except for the cn attribute in which write access is
denied. Note that the following ACL entry results in the same access:
aclEntry: cn=Tim,dc=yourcompany,dc=com:normal:rwsc:at.cn:deny:w

The evaluation of the permissions clauses is based on precedence, not order in the
ACL entry value(s).

Example 5
aclEntry: cn=Karen,dc=yourcompany,dc=com:normal:rwsc:sensitive:rsc:at.userpassword:w:
critical:deny:rwsc

In this example, cn=Karen,dc=yourcompany,dc=com is granted read, search, and
compare to normal and sensitive attributes, and write to normal attributes and the
userpassword attribute. All access to critical attributes (except for write in
userpassword) is turned off.

Example 6
aclEntry: group:cn=group1,dc=yourcompany,dc=com:normal:rwsc
aclEntry: group:cn=group2,dc=yourcompany,dc=com:sensitive:rwsc:at.cn:deny:w

In this example, a member of group1 only would be granted read, write, search,
and compare to normal attributes. A member of both group1 and group2 would be
granted read, write, search, and compare to normal and sensitive attributes,
excluding write access to the cn attribute. This is an example where a member of
both groups is granted access to less information than what is granted to each of
the two groups individually.

Example 7
aclEntry: access-id:cn=Tim,dc=yourcompany,dc=com:normal:rwsc:at.cn:rsc

In this example, cn=Tim,dc=yourcompany,dc=com is granted read, write, search, and
compare on normal attributes and read, search, and compare on the cn attribute.
Note that cn=Tim,dc=yourcompany,dc=com will also have write access to the cn
attribute by virtue of cn having an access class of normal.

Example 8
aclEntry: access-id:cn=Tim,dc=yourcompany,dc=com:normal:rwsc:at.cn:deny:rsc

In this example, cn=Tim,dc=yourcompany,dc=com is granted read, write, search, and
compare on normal attributes and denied read, search, and compare on the cn
attribute. Note that cn=Tim,dc=yourcompany,dc=com will still have write access to the
cn attribute by virtue of cn having an access class of normal.

Search
In order to read an attribute from the directory, the user must have read permission
for the specific attribute or for the attribute access class to which the attribute
belongs.

Filter
In order to use an attribute in a search filter supplied on a search operation, the
user must have search permission for the specific attribute or for the attribute
access class to which the attribute belongs.

Chapter 8. Using access control 105

Compare
In order to perform a compare operation on an attribute/value combination, the user
must have compare permission for the specific attribute or for the attribute class to
which the attribute belongs.

Requested attributes
If the user has the search permission on all attributes contained in the filter, the
server returns as much information as possible. All requested attributes that the
user has read permission for are returned.

For example, let the aclEntry be
group:cn=Anybody:normal:rsc:sensitive:c:critical:c

and let a client perform an anonymous search
ldapsearch -b "c=US" "cn=LastName" title userpassword telephoneNumber

where title is a normal attribute, telephoneNumber is a sensitive attribute, and
userpassword is a critical attribute. Users performing anonymous searches are
given the permission granted to the cn=Anybody group. In this example,
permission exists to the filter since cn is in the normal attribute access class, and
cn=Anybody has s (search) permission to the normal attribute access class. What
is returned however, is only the title attribute for any matching entry. The
telephoneNumber and userPassword attributes are not returned since
cn=Anybody does not have read permissions on the sensitive and critical
attribute access classes.

Propagating ACLs
ACLs can be set on any entry in the hierarchy. ACLs can propagate down through
the directory hierarchy. These ACLs, called propagating ACLs, have the
aclPropagate attribute set to TRUE. All descendents of this entry will inherit the
ACL set at that point, unless overridden. In order to specify an ACL different from
that of its parent, a new ACL must be explicitly set.

When setting the new ACL, there is again a choice of whether to propagate the
ACL. If set to TRUE, the ACL will propagate down to all descendants. If set to
FALSE, the ACL is not propagated; it instead becomes an override ACL. The ACL is
not propagated down through the hierarchy, but instead applies only to the one
particular entry that it is associated with within the hierarchy. If unspecified,
aclPropagate is set to TRUE.

An entry without an explicit ACL receives its ACL from the nearest propagating
ancestor ACL. If there is no propagating ACL, the entry receives the default ACL.
Propagated ACLs do not accumulate as the depth in the tree increases. The scope
of a propagated ACL is from the explicitly-set propagating ACL down through the
tree until another explicitly-set propagating ACL is found.

The same rules apply to propagating the entry owner based on the
ownerPropagate attribute.

Example of propagation
Following is the explicit ACL for entry ou=deptXYZ, o=IBM, c=US :

106 z/VM: TCP/IP LDAP Administration Guide

aclPropagate: TRUE
aclEntry: group:cn=deptXYZRegs, o=IBM, c=US:normal:rcs:sensitive:rsc
aclEntry: access-id:cn=personA, ou=deptXYZ, o=IBM, c=US:object:ad:normal:rwsc:sensitive:rwsc:critical:rsc
aclEntry: group:cn=Anybody:normal:rsc
aclSource: ou=deptXYZ, o=IBM, c=US

In the absence of an explicit ACL for entry cn=personA, ou=deptXYZ, o=IBM, c=US,
the following is the implicit, propagated ACL for the entry:
aclPropagate: TRUE
aclEntry: group:cn=deptXYZRegs, o=IBM, c=US:normal:rcs:sensitive:rsc
aclEntry: access-id:cn=personA, ou=deptXYZ, o=IBM, c=US:object:ad:normal:rwsc:sensitive:rwsc:critical:rsc
aclEntry: group:cn=Anybody:normal:rsc
aclSource:ou=deptXYZ, o=IBM, c=US

In this example, a propagating ACL has been set on ou=deptXYZ, o=IBM, c=US. No
ACL has been set on the descendant cn=personA, ou=deptXYZ, o=IBM, c=US.
Therefore, the descendant inherits its ACL value from the nearest ancestor with a
propagating ACL. This happens to be ou=deptXYZ, o=IBM, c=US, which is reflected
in the aclSource attribute value. The aclEntry and aclPropagate values are
identical to those values in the explicit propagating ACL set at ou=deptXYZ, o=IBM,
c=US.

Examples of overrides
Following is an explicit ACL for entry o=IBM, c=US:
aclPropagate: TRUE
aclEntry: group:cn=IBMRegs, o=IBM, c=US:normal:rcs:sensitive:rsc
aclEntry: group:cn=Anybody:normal:rsc
aclSource: o=IBM, c=US

Following is an explicit ACL for entry ou=deptXYZ, o=IBM, c=US:
aclPropagate: FALSE
aclEntry: group:cn=deptXYZRegs, o=IBM, c=US:normal:rcs:sensitive:rsc
aclEntry: access-id:cn=personA, ou=deptXYZ, o=IBM, c=US:object:ad:normal:rwsc:sensitive:rwsc:critical:rsc
aclEntry: group:cn=Anybody:normal:rsc
aclSource: ou=deptXYZ, o=IBM, c=US

Note that in the explicit ACLs above, aclSource is the same as the entry DN. This
attribute is generated and managed by the LDAP server; it cannot be set when
modifying ACLs.

Following is an implicit ACL for entry cn=personA, ou=deptXYZ, o=IBM, c=US:
aclPropagate: TRUE
aclEntry: group:cn=IBMRegs, o=IBM, c=US:normal:rcs:sensitive:rsc
aclEntry: group:cn=Anybody:normal:rsc
aclSource: o=IBM, c=US

In this example, a propagating ACL has been set on o=IBM, c=US. An override ACL
has been set (aclPropagate is FALSE) on the descendant ou=deptXYZ, o=IBM,
c=US. Therefore, the ACL set at ou=deptXYZ, o=IBM, c=US pertains only to that
particular entry.

The descendant cn=personA, ou=deptXYZ, o=IBM, c=US inherits its ACL value from
the nearest ancestor with a propagating ACL (which is o=IBM, c=US as reflected in
the aclSource). The ACL on ou=deptXYZ, o=IBM, c=US is not used because
aclPropagate is FALSE.

Other examples
In these examples, the administrator DN will be cn=admin, c=US.

The following example shows the default ACL:

Chapter 8. Using access control 107

aclPropagate: TRUE
aclEntry: group:cn=Anybody:normal:rsc:system:rsc
aclSource: default
ownerPropagate: TRUE
entryOwner: access-id:cn=admin,c=US
ownerSource: default

The following example shows a typical ACL for entry cn=personA, ou=deptXYZ,
o=IBM, c=US:
aclPropagate: TRUE
aclEntry: group:cn=deptXYZRegs, o=IBM, c=US:normal:rcs:sensitive:rsc
aclEntry: access-id:cn=personA, ou=deptXYZ, o=IBM, c=US:object:ad:normal:rwsc:sensitive:rwsc:critical:rsc
aclEntry: group:cn=Anybody:normal:rsc:system:rsc
aclSource: ou=deptXYZ, o=IBM, c=US
ownerPropagate: TRUE
entryOwner: access-id:cn=deptXYZMgr, ou=deptXYZ, o=IBM, c=US
ownerSource: ou=deptXYZ, o=IBM, c=US

This is an inherited ACL and an inherited owner. Both owner properties and ACL
properties are inherited from entry ou=deptXYZ, o=IBM, c=US. In this example,
members of group cn=deptXYZRegs, o=IBM, c=US have permission to read, search
and compare attributes in both the normal and sensitive attribute access classes.
They do not have permission to add or delete entries under this entry. Nor do they
have permission to access any information or change any information on attributes
in the critical attribute access class. Unauthenticated, as well as all other bound
users, have permission to read, search, and compare attributes in the normal and
system attribute access classes only. The personA has add and delete permission
on the entry; read, write, search, and compare permissions on normal and
sensitive attributes; and read, search, and compare permission on critical
attributes. The deptXYZMgr had full access to the entry since it is the owner of the
entry. As always, the administrator also has unrestricted access to the entry.

Access control groups
Access control groups provide a mechanism for applying the same aclEntry or
entryOwner attribute values to an entry for multiple users without having to create
an explicit aclEntry or entryOwner for each user.

For the LDBM backends, the following object classes are evaluated as access
control group entries: accessGroup, accessRole, groupOfNames,
groupOfUniqueNames, ibm-staticGroup, groupOfUrls, ibm-dynamicGroup, and
ibm-nestedGroup. See Chapter 7, “Static, dynamic, and nested groups” for more
information on static, dynamic, and nested groups.

Associating DNs and access groups with a bound user
After a successful bind request, a bind distinguished name is associated with the
bound user.

v For a simple bind, the bind DN is the DN specified in the bind request. There
must be an entry in LDAP with that DN. The entry can be in an LDBM backend,
an SDBM backend, or in a client operation plug-in extension.

v For a CRAM-MD5 bind, the bind request must specify a DN or a username. If a
DN is specified, there must be an entry in LDAP with that DN. If a username is
specified, there must be an entry in LDAP that contains the username as a uid
attribute value. If both a DN and a username are specified, there must be an
entry in LDAP with that DN and the username must be a uid attribute value in
that entry. In all of these cases, the bind DN is the DN of the entry. The entry can

108 z/VM: TCP/IP LDAP Administration Guide

be in an LDBM backend, or in a client operation plug-in extension. See
Chapter 6, “CRAM-MD5 and DIGEST-MD5 authentication,” on page 81 for more
information.

v For a DIGEST-MD5 bind, the bind request must specify a username and may
optionally contain an authorization DN. If only a username is specified, there
must be an entry in LDAP that contains the username as a uid attribute value. If
both a username and an authorization DN are specified, there must be an entry
in LDAP with the authorization DN as its DN and the username must be a uid
attribute value in that entry. In both cases, the bind DN is the DN of the entry.
The entry can be in an LDBM backend, or in a client operation plug-in extension.
See Chapter 6, “CRAM-MD5 and DIGEST-MD5 authentication,” on page 81 for
more information.

v For a certificate (EXTERNAL) bind, the bind DN is normally the subject DN from
the certificate specified in the bind request. There can not be an entry in an
LDBM backend or in a client operation plug-in extension corresponding to this
DN.

After the bind DN is determined, the DNs of the groups that the bound user belongs
to are also added to the bind information. The bind DN and group information are
used in access control in LDAP operations from the bound user.

Note: Group gathering is not performed if any of the following is true:

1. The user binds as the adminDN, peerServerDN, or masterServerDN.

2. The authenticateOnly server control is specified as part of the bind
request.

The groups are gathered in the following manner:

v The backend or client operation plug-in extension that contains the bind DN is
contacted to contribute DNs of any group entries that contain the bind DN or any
of the alternate DNs. If the bind DN is not in a backend or a client operation
plug-in extension, this step is skipped.

v Each LDBM backend that has extendedGroupSearching on specified in the
LDAP server configuration file is also contacted to contribute the DNs of any
group entries in the backend that contain the bind DN or any of the alternate
DNs. The client operation plug-in extensions are also contacted to contribute
group DNs if they have registered a SLAPI_TYPE_GROUPS callback type
routine. Note that SDBM does not support extended group searching.

Deleting a user or a group
Deleting a user or a group does not have any cascade effect on any aclEntry and
entryOwner values that include that user or group. The user or group DN is not
removed from the ACLs. If another user or group is subsequently created with the
same DN, that user or group will be granted the privileges of the former user or
group.

Retrieving ACL information from the server
In order to retrieve all of the ACL information in a namespace, use the ldapsearch
command, as shown in the following example:
ldapsearch -h 127.0.0.1 -D "cn=admin, dc=Your Company,dc=com" -w xxxxxx
-b "dc=Your Company,dc=com" "(objectclass=*)" aclEntry aclPropagate aclSource
entryOwner ownerPropagate ownerSource

Chapter 8. Using access control 109

dn: dc=Your Company, dc=com
aclPropagate: TRUE
aclEntry: CN=ADMIN:normal:rwsc:sensitive:rwsc:critical:rwsc:object:ad
aclEntry: CN=ANYBODY:normal:rsc:system:rsc
aclSource: dc=Your Company, dc=com
ownerPropagate: TRUE
entryOwner: CN=ADMIN
ownerSource: default

This command performs a subtree search starting at the root of the tree (assuming
the root of the tree is "dc=Your Company,c=com") and returns the six ACL attributes
for each entry in the tree. It is necessary to specifically request the six ACL
attributes because they are considered as “operational” and, therefore, can only be
returned on a search if requested. (See IETF RFC 2251, The Lightweight Directory
Access Protocol (v3).)

ACL information (aclEntry, aclPropagate, aclSource, entryOwner,
ownerPropagate, and ownerSource) is returned for all entries. For those entries
that contain ACLs, the aclSource and ownerSource attributes contain the same
DN as the entry DN. For those entries that do not contain ACLs, the aclSource and
ownerSource attributes contain distinguished names of the entries that contain the
ACL information (aclEntry and entryOwner) that are used for access control
checking of information in that entry.

Notes:

1. It is possible for the aclSource and ownerSource attributes to contain the
value default. This is not a distinguished name but rather represents that the
ACL that applies to the entry is the default ACL.

2. If the tree is larger than the sizeLimit option in the LDAP server configuration
file or on the search command, then not all entries are returned. See the
sizeLimit configuration option in “Configuring the LDAP Server” in z/VM: TCP/IP
Planning and Customization for more information.

You can also use the same method to get the ACL information for a portion of the
namespace by specifying the -b searchbase parameter on the search command,
where searchbase is the starting point for the search.

Creating and managing access controls
To create and update ACLs in LDBM, GDBM, or the schema entry, use a tool
implementing ldap_modify APIs, such as ldapmodify. The ldapmodify utility
allows creation, modification, and deletion of any set of attributes that are
associated with an entry in the directory. Since access control information is
maintained as a set of additional attributes within an entry, ldapmodify is a natural
choice for administering access control information in LDBM, GDBM, or the schema
entry.

See z/VM: TCP/IP User’s Guide for details on using the utilities, such as
ldapmodify.

Creating an ACL
In order to create an ACL, the aclEntry and aclPropagate attributes must be
added to the information stored for an entry. The aclEntry and aclPropagate
attributes are added to an entry by either specifying them as part of the entry
information when the entry is added to the directory or by modifying the entry after
it exists to contain the aclEntry and aclPropagate information.

110 z/VM: TCP/IP LDAP Administration Guide

It is possible to create an ACL without specifying the aclPropagate attribute. In this
case, the aclPropagate attribute is assumed to have a value of TRUE and is added
into the directory entry automatically, along with the aclEntry information.

Since the ldapmodify utility is very powerful, all the possible ways of adding the
aclEntry and aclPropagate information cannot be shown here. The examples
shown here describe the more common uses of the ldapmodify utility to add ACL
information.

Figure 21 shows how to add a propagating ACL with three aclEntry values to an
existing entry replacing any current aclEntry value.

The ACL added in Figure 21 is created as a propagating ACL since the
aclPropagate attribute is not specified and so assumed to be TRUE. This means
that the ACL will apply to all entries below cn=tim, o=Your Company that do not
already have an ACL associated with them. Note that the first and last aclEntry
values span two lines in the newAcl.ldif file. In order to do this, the first character
on the continued line must be a space character, as shown in the example.

While it is not required that the administrator update all ACL information, the
examples in this section all use the administrator when updating ACLs. Further, the
use of -h 127.0.0.1 implies that the ldapmodify commands are performed from
the same system on which the LDAP server is running and that the LDAP server is
listening on TCP/IP port 389. Refer to the ldapmodify command description in
z/VM: TCP/IP User’s Guide for more details on the -h, -p, -D, and -w command-line
options. The ACL attributes can be updated from any LDAP client as long as the
user performing the updates has the proper authorization to update the ACL
information.

The ACL attributes are defined to be in a special access class called restricted.
Therefore, in order to allow someone other than the LDAP administrator to update
the ACL attributes, they must either be the entry owner or have the proper
authorization to restricted attributes. Figure 22 shows an example of adding an
ACL so that cn=jeanne, o=Your Company can update the ACL information:

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f newAcl.ldif

Where newAcl.ldif contains:
dn: cn=tim, o=Your Company
changetype: modify
replace: aclEntry
aclEntry: cn=jeanne, o=Your Company:
normal:rsc:sensitive:rsc:critical:rsc
aclEntry: cn=jeff, cn=tim, o=Your Company:normal:rsc
aclEntry: cn=tim, o=Your Company:
normal:rwsc:sensitive:rwsc:critical:rwsc
-

Figure 21. Example of adding propagating ACL to existing entry in directory

Chapter 8. Using access control 111

The ACL added in Figure 22 allows cn=jeanne, o=Your Company to update the ACL
information for this entry. In addition, since the ACL is a propagating ACL, this
allows cn=jeanne, o=Your Company to create new ACL information against any entry
that is controlled by this ACL. Care must be taken here, however, since it is
possible for cn=jeanne, o=Your Company to set up an ACL which then does not
allow cn=jeanne, o=Your Company update capability on the ACL information. If this
occurs, a user with sufficient authority (the administrator, for example) must be used
in order to reset/change the ACL information.

Figure 23 shows an example of adding a non-propagating ACL. A non-propagating
ACL applies only to the entry to which it is attached and not to the subtree of
information that might be stored below the entry in the directory.

Setting up a non-propagating ACL is similar to setting up a propagating ACL. The
difference is that the aclPropagate attribute value is set to FALSE.

Modifying an ACL
Once an ACL exists for an entry in the directory, it may have to be updated. To do
this, the ldapmodify command is used. As described earlier in This topic, while the
ldapmodify command is used in these examples, what is really being used is an
LDAP client application, issuing LDAP modify operations to the LDAP server.
Therefore, modifications to ACL information need not be performed from the same
system on which the LDAP server is running.

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f newAcl.ldif

Where newAcl.ldif contains:
dn: cn=jeanne, o=Your Company
changetype: modify
replace: aclEntry
aclEntry: cn=jeanne, o=Your Company:
normal:rsc:sensitive:rsc:critical:rsc:restricted:rwsc

aclEntry: cn=jeff, cn=tim, o=Your Company:normal:rsc
aclEntry: cn=tim, o=Your Company:
normal:rsc

-
add: aclPropagate
aclPropagate: TRUE
-

Figure 22. Example of adding propagating ACL to existing entry in the directory.

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f newAcl.ldif

Where newAcl.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
replace: aclEntry
aclEntry: cn=tim, o=Your Company:normal:rwsc:sensitive:rwsc:
critical:rwsc:restricted:rwsc

aclEntry: cn=jeff, cn=tim, o=Your Company:normal:rwsc:
sensitive:rwsc:critical:rwsc

aclEntry: cn=jeanne, o=Your Company:normal:rsc
-
replace: aclPropagate
aclPropagate: FALSE
-

Figure 23. Example of setting up a non-propagating ACL

112 z/VM: TCP/IP LDAP Administration Guide

Modifications to ACLs can be of a number of different types. The most common
modifications are to:

v Add an additional aclEntry value to the ACL to allow another person or group
access to the entry

v Change an ACL from propagating to non-propagating (not permitted for the
GDBM change log suffix, cn=changelog)

v Remove an aclEntry value which exists in the ACL to disallow another person or
group access to the entry that they had before.

Figure 24, Figure 25, and Figure 26 show examples of these modifications,
respectively.

Access determination shows how an additional aclEntry value is added to existing
ACL information.

In Figure 24, cn=dylan, cn=tim, o=Your Company is granted permissions against the
cn=jeff, cn=tim, o=Your Company entry in the directory. The existing ACL
information remains in the entry; the aclEntry attribute value for cn=dylan, cn=tim,
o=Your Company is added to this information.

Figure 25 shows how to modify an existing ACL to be non-propagating instead of
propagating.

In Figure 25, the existing ACL against cn=tim, o=Your Company is modified to be a
non-propagating ACL instead of a propagating ACL. This means that the ACL will no
longer apply to entries below cn=tim, o=Your Company in the directory tree. Instead,
the first propagating ACL that is found in an entry above cn=tim, o=Your Company
will be applied to the entries below cn=tim, o=Your Company. If no propagating ACL
is found in the entries above cn=tim, o=Your Company, then the default ACL is used.

Figure 26 shows how to remove an aclEntry value from existing ACL information:

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modAcl.ldif

Where modAcl.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
add: aclEntry
aclEntry: cn=dylan, cn=tim, o=Your Company:
normal:rwsc:sensitive:rwsc:critical:rwsc:restricted:rwsc
-

Figure 24. Example of adding an aclEntry attribute value

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modAcl.ldif

Where modAcl.ldif contains:
dn: cn=tim, o=Your Company
changetype: modify
replace: aclPropagate
aclPropagate: FALSE
-

Figure 25. Example of modifying aclPropagate attribute

Chapter 8. Using access control 113

In Figure 26, the aclEntry attribute value for cn=dylan, cn=tim, o=Your Company is
removed from the ACL information for entry cn=jeff, cn=tim, o=Your Company.
Only the distinguished name part of the aclEntry value needs to be specified when
deleting the value.

Deleting an ACL
In order to delete an ACL that is attached to an entry in the directory, the aclEntry
and aclPropagate attributes must be deleted from the entry. To do this, use the
ldapmodify command to delete the entire attribute (all values) from the entry.

Figure 27 shows an example of deleting an ACL from an entry.

In Figure 27, the existing ACL against cn=jeff, cn=tim, o=Your Company is
removed. This means that the ACL will no longer apply to the entry. Instead, the
first propagating ACL that is found in an entry above cn=jeff, cn=tim, o=Your
Company will be applied to cn=jeff, cn=tim, o=Your Company. If no propagating ACL
is found in the entries above cn=jeff, cn=tim, o=Your Company, then the default
ACL is used.

Creating an owner for an entry
In addition to the access control list control of directory entries, each entry can have
assigned to it an entry owner or set of entry owners. As an entry owner, full access
is allowed to the entry. Entry owners are granted add and delete permission, as well
as read, write, search, and compare for all attribute classes. Entry owners can add
and modify ACL information on the entries for which they are specified as the
owner.

Entry owners are listed in the entryOwner attribute. Just like aclEntry information,
entryOwner information can be propagating or non-propagating based on the
setting of the ownerPropagate attribute. Like the aclSource attribute for aclEntry
information, the ownerSource attribute lists the distinguished name of the entry that
contains the entryOwner attribute which applies to the entry. The ownerSource
attribute is set by the server and cannot be directly set when modifying the ACLs.

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modAcl.ldif

Where modAcl.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
delete: aclEntry
aclEntry: cn=dylan, cn=tim, o=Your Company
-

Figure 26. Example of removing a single aclEntry attribute value

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f delAcl.ldif

Where delAcl.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
delete: aclEntry
-
delete: aclPropagate
-

Figure 27. Example of deleting an ACL from an entry

114 z/VM: TCP/IP LDAP Administration Guide

In order to create an entry owner, the entryOwner and ownerPropagate attributes
must be added to the information stored for an entry. The entryOwner and
ownerPropagate attributes are added to an entry by either specifying them as part
of the entry information when the entry is added to the directory or by modifying the
entry after it exists to contain the entryOwner and ownerPropagate information.

It is possible to create an entry owner without specifying the ownerPropagate
attribute. In this case, the ownerPropagate attribute is assumed to have a value of
TRUE and is added into the directory entry automatically.

Since the ldapmodify command is very powerful, all the possible ways of adding
the entryOwner and ownerPropagate information cannot be shown here. The
examples shown here describe the more common uses of the ldapmodify
command to add entry owner information.

Figure 28 shows how to add a propagating entry owner with two entryOwner
values to an existing entry.

The entry owners added in Figure 28 are created as a propagating set of entry
owners since the ownerPropagate attribute is not specified and so assumed to be
TRUE. This means that the entry owners will apply to all entries below cn=tim,
o=Your Company that do not already have an entry owner associated with them.

While it is not required that the LDAP administrator update all entry owner
information, the examples in this section all use the administrator as the entry
owner updating ACLs. Further, the use of -h 127.0.0.1 implies that the ldapmodify
commands are performed from the same system on which the LDAP server is
running and that the LDAP server is listening on TCP/IP port 389. Refer to the
ldapmodify command description in z/VM: TCP/IP User’s Guide for more details on
the -h, -p, -D, and -w command-line options. The entry owner attributes can be
updated from any LDAP client as long as the user performing the update has the
proper authorization to update the entry owner information.

The entry owner attributes, like the ACL attributes, are defined to be in a special
access class called restricted. Therefore, in order to allow someone other than the
LDAP administrator to update the entry owner attributes, they must either be the
entry owner or have the proper authorization to restricted attributes. See Figure 22
for an example of allowing users other than the LDAP administrator the ability to
update entry owner information.

Figure 29 shows an example of adding a non-propagating entry owner. A
non-propagating entry owner applies only to the entry to which it is attached and
not to the subtree of information that might be stored below the entry in the
directory.

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f newOwn.ldif

Where newOwn.ldif contains:
dn: cn=tim, o=Your Company
changetype: modify
replace: entryOwner
entryOwner: cn=joe, o=Your Company
entryOwner: cn=carol, o=Your Company
-

Figure 28. Example of adding a propagating set of entry owners to existing entry in the directory

Chapter 8. Using access control 115

Setting up a non-propagating entry owner is similar to setting up a propagating
entry owner. The difference is that the ownerPropagate attribute value is set to
FALSE.

Modifying an owner for an entry
Once an entry owner exists for an entry in the directory, it may have to be updated.
To do this, the ldapmodify command is used. As described earlier in This topic,
while the ldapmodify command is used in these examples, what is really being
used is an LDAP client application, issuing LDAP modify operations to the LDAP
server. Therefore, modifications to entry owner information need not be performed
from the same system on which the LDAP server is running.

Modifications to entry owners can be of a number of different types. The most
common modifications are to:

v Add an additional entryOwner value to the set of entry owners to allow another
person or group to control the entry

v Change an entry owner from propagating to non-propagating (not permitted for
the GDBM change log suffix, cn=changelog)

v Remove an entryOwner value which exists in the entry owner set to disallow
another person or group access to control the entry that they had control over
before.

Figure 30, Figure 31, and Figure 32 show examples of these modifications,
respectively.

Figure 30 shows how an additional entryOwner value is added to existing entry
owner information.

In Figure 30, cn=george, o=Your Company is granted entry owner control of the
cn=jeff, cn=tim, o=Your Company entry in the directory. The existing entry owner
information remains in the entry; the entryOwner attribute value for cn=george,
o=Your Company is added to this information.

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f newOwn.ldif

Where newOwn.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
replace: entryOwner
entryOwner: cn=george, o=Your Company
entryOwner: cn=jane, o=Your Company
-
replace: ownerPropagate
ownerPropagate: FALSE
-

Figure 29. Example of setting up a non-propagating entry owner

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modOwn.ldif

Where modOwn.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
add: entryOwner
entryOwner: cn=george, o=Your Company
-

Figure 30. Example of adding an entryOwner attribute value

116 z/VM: TCP/IP LDAP Administration Guide

Figure 31 shows how to modify an existing entry owner to be non-propagating
instead of propagating.

In Figure 31, the existing entry owner set for cn=tim, o=Your Company is modified to
be non-propagating instead of propagating. This means that the entry owner will no
longer apply to entries below cn=tim, o=Your Company in the directory tree. Instead,
the first propagating entry owner set that is found in an entry above cn=tim, o=Your
Company will be applied to the entries below cn=tim, o=Your Company. If no
propagating entry owner is found in the entries above cn=tim, o=Your Company,
then the default entry owner is used.

Figure 32 shows how to remove an entryOwner value from existing entry owner
information:

In Figure 32, the entryOwner attribute value for cn=george, cn=tim, o=Your
Company is removed from the entry owner information for entry cn=jeff, cn=tim,
o=Your Company. Only the distinguished name part of the entryOwner value needs
to be specified when deleting the value.

Deleting an owner for an entry
In order to delete an entry owner set that is attached to an entry in the directory, the
entryOwner and ownerPropagate attributes must be deleted from the entry. To do
this, use the ldapmodify command to delete the entire attribute (all values) from
the entry.

Figure 33 shows an example of deleting an entry owner set from an entry.

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modOwn.ldif

Where modOwn.ldif contains:
dn: cn=tim, o=Your Company
changetype: modify
replace: ownerPropagate
ownerPropagate: FALSE
-

Figure 31. Example of modifying the ownerPropagate attribute

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modOwn.ldif

Where modOwn.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
delete: entryOwner
entryOwner: cn=george, cn=tim, o=Your Company
-

Figure 32. Example of removing a single entryOwner Attribute value

Chapter 8. Using access control 117

In Figure 33, the existing entry owner set against cn=jeff, cn=tim, o=Your Company
is removed. This means that the entry owner information will no longer apply to the
entry. Instead, the first propagating entry owner set that is found in an entry above
cn=jeff, cn=tim, o=Your Company will be applied to cn=jeff, cn=tim, o=Your
Company. If no propagating entry owner set is found in the entries above cn=jeff,
cn=tim, o=Your Company, then the default entry owner is used.

Creating a group for use in ACLs and entry owner settings
Sets of users can be grouped together in the directory by defining them as
members of a group in the directory. A directory group, used for access control
checking, is just another entry in the directory. A static, dynamic, or nested group
entry can be used as a group on the aclEntry or entryOwner attributes. See
Chapter 7, “Static, dynamic, and nested groups” for more information on creating,
modifying, and deleting static, dynamic, and nested group entries.

When defining access controls or entry owner sets, names of group entries can be
used in the same place as user entry names. When access control decisions are
performed, a user’s group memberships can be used in determining if a user can
perform the action requested.

Groups are added to access control information in just the same way as user
entries are added to access control information. Figure 34 shows how a group can
be added to the aclEntry information in an existing access control specification for
an entry. Figure 35 shows how a group can be added as an entryOwner to an
existing entry owner specification for an entry.

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f delOwn.ldif

Where delOwn.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
delete: entryOwner
-
delete: ownerPropagate
-

Figure 33. Example of deleting an entry owner set from an entry

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modAcl.ldif

Where modAcl.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
add: aclEntry
aclEntry: group:cn=group1, o=Your Company:normal:rwsc:sensitive:rsc
-

Figure 34. Example of adding a group to access control information

118 z/VM: TCP/IP LDAP Administration Guide

$ ldapmodify -h 127.0.0.1 -D "cn=admin" -w xxxx -f modOwn.ldif

Where modOwn.ldif contains:
dn: cn=jeff, cn=tim, o=Your Company
changetype: modify
add: entryOwner
entryOwner: cn=group1, o=Your Company
-

Figure 35. Example of adding a group to entry owner information

Chapter 8. Using access control 119

120 z/VM: TCP/IP LDAP Administration Guide

Chapter 9. Replication

Once the z/VM LDAP server is installed and configured, users can access the
directory, add entries, delete entries, or perform search operations to retrieve
particular sets of information.

Replication is a process which keeps multiple directories in sync. Through
replication, a change made to one directory is propagated to one or more additional
directories. In effect, a change to one directory shows up on multiple different
directories.

There are several benefits realized through replication. The single greatest benefit
is providing a means of faster searches. Instead of having all search requests
directed at a single server, the search requests can be spread among several
different servers. This improves the response time for the request completion.

Additionally, the replica provides a backup to the replicating server. Even if the
replicating server crashes, or is unreadable, the replica can still fulfill search
requests, and provide access to the data.

There are two types of replication:

v In peer to peer replication, each LDAP peer server is a read-write server.
Updates processed on one peer server are replicated to all the other peer
servers. Peer servers are read-write to all users.

Note: The z/VM support for peer to peer replication is provided for failover
support purposes. There is no support for resolving conflicting
simultaneous updates on multiple peer servers, which can cause a failure
of replication. As a result, updates should be targeted to one peer server
at a time.

v In read-only replication, a single read-write LDAP server (the master) replicates
the updates it processes to a set of read-only replica servers.

Master
All changes to the directory are made to the master server. The master
server is then responsible for propagating the changes to all other
directories. It is important to note that while there can be multiple
directories representing the same information, only one of those
directories can be the master.

Read-only replica
Each of the additional servers which contain a directory replica. These
replica directories are identical to the master directory. These servers are
read-only to all users and will only accept updates from their master
server.

A replication network can contain both peer replica servers and read-only replica
servers. In this case, each peer server must act as a master to each read-only
replica (in addition to being a peer to all the peer servers), so that updates that
occur on any peer server are replicated to all the other peer and read-only replicas
in the network.

Replication is supported when the servers involved are running in single-server.
Refer to “Determining Operational Mode” for more information about server
operating modes.

© Copyright IBM Corp. 2007, 2009 121

In z/VM LDAP, replication is supported in LDBM backends. Replication is not
performed for the SDBM or GDBM backends or for the schema entry.

ibm-entryuuid replication
Replication of the ibm-entryuuid will be performed to any LDAP server that has
1.3.18.0.2.32.3 (the OID for the entry UUID capability) as a value in the
ibm-enabledCapabilities attribute in the root DSE. z/VM LDAP servers have this
capability. If the root DSE of a replica server does not contain the required
capability, then the ibm-entryuuid attribute will not be replicated to that server,
however, the entry and other attributes will be replicated.

Complex modify DN replication
Replication of Modify DN new superior operations will be performed to any LDAP
server that has 1.3.18.0.2.32.33 (the OID for the subtree move capability) or
1.3.18.0.2.32.34 (the OID for the subtree rename capability) as a value in the
ibm-enabledCapabilities attribute in the root DSE. z/VM LDAP servers have this
capability. If a replica server is not at a supported level, Modify DN new superior
operations will fail until the replica is removed from the replica collection.

Password encryption and replication
To ensure data integrity and the proper working of the LDAP servers in the
replication environment, the pwEncryption option in the configuration files for the
servers involved in replication must be the same. If one of the servers involved in
replication is a non-z/OS or non-z/VM server, then the administrator must choose a
pwEncryption method that is supported by both servers for correct operation of
replication. If no encryption methods are common between the servers, then
password encryption should not be used.

When replicating between a z/VM LDAP server and a non-z/OS or non-z/VM LDAP
server and using crypt for password encryption, specify pwCryptCompat off in the
backend section of the z/VM LDAP server configuration file. This setting indicates
that the LDAP server should use the UTF-8 version of the crypt algorithm to encrypt
passwords. When userPassword attribute values in crypt are replicated between
z/VM and non-z/OS or non-z/VM LDAP servers, the password will be the same on
both platforms and therefore it will be usable.

If using AES or DES encryption and the key is stored in an LDAPKEYS file and
both of the servers involved in replication are z/VM LDAP servers, the same key
label and data key must be present in both server’s copy of the LDAPKEYS file.
The AES or DES key label is specified in the LDAP server configuration files of both
of the LDAP servers involved in replication.

Replicating server
In order for the replication process to occur, the following must happen:
v The replicating server (master or peer) must be aware of each replica that is to

receive the change information.
v Each read-only and peer server must be aware of the replicating servers for the

directory that it serves. See LDAP update operations on read-only replicas for
more information.

The replicating server becomes aware of the existence of the replica servers when
entries with an object class of replicaObject are added to the directory. Each of

122 z/VM: TCP/IP LDAP Administration Guide

these entries represents a particular replica server. The attribute/value pairs within
the replica entry provide the information the replicating server needs in order to find
the replica server and send any updates to that server.

Replica entries
The replicaObject object class is provided in the initial schema. Like other LDAP
object class definitions, the replicaObject has mandatory and optional attributes.
Each of the replicaObject attributes are single-valued. The following is a
description of the mandatory attributes of replicaObject. Values in a replica entry
are recognized at server startup and when a replica entry is added or modified. The
internal number of how many replication operations have been set aside (the set
aside count) for a replica is not reset when the replica entry is modified. In order to
reset the count, either the server needs to be restarted or the replica entry needs to
be removed and added. See Replication error log for more information about the
set aside count.

Table 17. Replica entry schema definition (mandatory attributes)

Attribute Description and example

replicaHost This can be an IPv4 address, IPv6 address, or a hostname of the system where the
replica server is running.

Example:

replicahost: 9.130.77.27
replicahost: [5f1b:df00:ce3e:e200:20:800:2078:e3e3]
replicahost: myMachine.ibm.com

replicaBindDN Specifies the LDAP distinguished name that the replicating server uses to bind to the
replica when sending directory updates. The replicaBindDN and the masterServerDN
or peerServerDN in the replica’s LDAP server configuration file must have the same
value.

Example:

replicaBindDN: cn=Master

replicaCredentials Contains the authentication information needed for the replicating server to
authenticate to the replica using the replicaBindDN. The replicaCredentials attribute
value will be encrypted if the secretEncryption option is specified in the LDAP server
configuration file. This improves directory security since the bind password is no longer
stored in the directory in clear text. The secretEncryption option is also used to
encrypt pending updates while they are stored in the replication queue.

Example:

replicaCredentials: secret

cn Forms the RDN of the LDAP distinguished name of the replicaObject entry.

Example:

cn: myReplica

In the examples in Table 17, when the replicating server receives and successfully
finishes an update request, the update is also sent to myMachine.ibm.com on port
389 (the default port). The replicating server performs a bind operation using the
DN of cn=Master and password of secret. See “The Administrator DN and the
Replica Server DN and Passwords” in z/VM: TCP/IP Planning and Customization
for more information specifying the replication server DN and password.

In addition, there are several attributes available that provide additional flexibility in
configuring a replica server. For instance, an added description could better

Chapter 9. Replication 123

describe the replica server, and it could listen on a different port then the default
port of 389. Examples of adding a description and changing the port to 400 are
shown in Table 18, which describes the optional attributes of replicaObject.

Table 18. Replica entry schema definition (optional attributes)

Attribute Description and example

replicaPort Describes the port number on which the replica is listening for incoming requests. By
default, the server listens on port 389.

Example:

replicaPort: 400

replicaUpdateTimeInterval Delays the propagation of additional updates for specified number of seconds. The
default is for the replicating server to send updates immediately.

Example:

replicaUpdateTimeInterval: 3600

replicaUseSSL Determines whether the replicating server should replicate over SSL/TLS. The default
is to replicate without using SSL/TLS.

Example:

replicaUseSSL: TRUE

description Provides an additional text field for extra information pertaining to the replica entry.

Example:

description: Replica machine in the fourth floor lab

seeAlso Identifies another directory server entry that may contain information related to this
entry.

Example:

seeAlso: cn=Alternate Code, ou=Software, o=IBM, c=US

replicaBindMethod Identifies the bind method to be used. If it is specified, it must be set to simple.

Example:

replicaBindMethod: simple

Replication only supports simple authentication. SASL EXTERNAL, GSSAPI,
DIGEST-MD5, and CRAM-MD5 bind mechanisms are not supported as valid
replication bind mechanisms.

There are several additional attributes that affect error handling during replication.
See Replication error log for more information on error handling. These attributes
are not in any object class, therefore, the extensibleObject object class must
included in the replica entry when adding these attributes to the entry. Table 19
describes these attributes.

124 z/VM: TCP/IP LDAP Administration Guide

Table 19. Additional optional replication attributes

Attribute Description and example

ibm-slapdLog Specifies the file name of the replication error log. This must be an
OpenExtensions file. The file name can be fully-qualified or can be
relative to the current working directory of the LDAP server. The
current working directory is set when the LDAP server is started to
the HOME environment variable if specified, or else to /etc/ldap.
This format is not recommended. The value must be unique among
all the replica entries in this LDAP server. If this attribute is not
present in the replica entry or it has no value, error logging and
setting aside will not occur.

Example:

ibm-slapdLog: /home/replog/replica1.errlog

ibm-
slapdReplMaxErrors

Specifies the maximum number of replication errors that will be set
aside in the replication error log before replication is allowed to
stall. If this attribute is not present in the replica entry or if the value
is 0, then no operations are set aside. In this case, errors are still
logged and replication stalls when the first error occurs. This
attribute is not used if a replication log file name has not been
specified with the ibm-slapdLog attribute.

Example:

ibm-slapdReplMaxErrors: 5

Adding replica entries in LDBM
In LDBM, replica entries can be placed anywhere within the directory tree, although
it is recommended that a replica entry be a leaf entry. Placing replica entries in the
directory tree then requires that any parent entries of the replica entry be added to
the directory prior to adding the replica entry. These entries must be added to both
the replicating server and replica server before addition of the replica entry. This is
needed on the replica server because these entries are being added at the
replicating server without replication being active. If a replica entry is not placed as
a leaf node in the directory tree, the only entries allowed below the replica entry are
other replica entries. The LDAP server will allow non-replica entries to be placed
below replica entries; however, these entries will not be replicated to the replica
servers.

The replica entry defines a replica for the backend containing the entry. Any
changes made to the directory tree managed by that backend will be replicated to
each replica defined for that backend. The replica entry does not define replicas for
other backends in the LDAP server, therefore, if changes to all LDBM directory
trees managed by the LDAP server are to be replicated, then each backend must
contain the appropriate replica entries to define replication for that backend.

The following is an example of a replica entry definition using LDIF format.
dn: cn=myReplica,o=Your Company
objectclass: replicaObject
objectclass: extensibleObject
cn: myReplica
replicaHost: myMachine.ibm.com
replicaBindDn: cn=Master
replicaCredentials: secret
replicaPort: 400

Chapter 9. Replication 125

replicaUseSSL: FALSE
description: Replica machine in the fourth floor lab
ibm-slapdLog: ro1.errlog
ibm-slapdReplMaxErrors: 5

Searching a replica entry
Most of the attributes in a replica entry are operational attributes. When searching a
replica entry, the operational attributes are not included in the output unless they
are specified in the attributes to be returned. The following command searches for
all replica entries in a suffix and returns the complete replica entries in LDIF format:
ldapsearch -h ldaphost -p ldapport -D bindDN -w bindPW -L -b "suffix"
"objectclass=replicaObject" "*" replicaHost replicaBindDN replicaCredentials
replicaPort replicaUpdateTimeInterval replicaUseSSL replicaBindMethod

Displaying replication status
The LDAP server DISPLAY REPLICAS operator command can be used to display
information about the status of replication to each replica server. See “SMSG
Interface to the LDAP Server” in z/VM: TCP/IP Planning and Customization for a
description of the DISPLAY REPLICAS output.

Maintenance mode
Maintenance mode is the LDAP server setup mode for replication. This mode
restricts access to the backends in an LDAP server to allow replica backends to be
primed for replication. Access to the backends is as follows:

v read-only replica backend: The masterServerDN for the replica and the
adminDN have unrestricted access

v peer replica backend: The peerServerDN for the replica and the adminDN have
unrestricted access

v non-replica backends (including the schema entry): The adminDN has
unrestricted access. The masterServerDN and peerServerDN have no access
outside of the backends which specify them.

Other users can bind to the LDAP server, but cannot access any entries within the
server.

ACL checking is performed during search operations from masterServerDN and
peerServerDN but not during update and compare operations. No ACL checking is
done for any operations from adminDN. In addition, the adminDN has the
capability in maintenance mode to modify attributes that are read-only and are
normally only set by the LDAP server, such as ibm-entryuuid.

Note: The LDAP server schema entry is not part of any replica backend. When the
LDAP server is not in maintenance mode, masterServerDN and
peerServerDN can only update the LDAP server schema if the schema
entry ACL permits them to. When in maintenance mode, they cannot update
the LDAP server schema at all. adminDN can always update the schema.

Pending replication entries are replicated to the other replica servers, but updates
performed when in maintenance mode are not replicated.

Specify the -m option on the server startup command to start the LDAP server in
maintenance mode.

126 z/VM: TCP/IP LDAP Administration Guide

You can use the SMSG command to change from maintenance mode to normal
mode while the LDAP server is running. The command can also be used to put a
running server into maintenance mode. For example:
smsg ldapsrv maintmode on

turns maintenance mode on for the server whose user ID is LDAPSRV, and
smsg ldapsrv maintmode off

turns maintenance mode off (and normal mode on) for the same server.

Replica server
Initialization, or population, of a replica directory requires several steps.

Changes to the LDAP server schema entry on the replicating server are not
replicated. A separate update of the LDAP server schema on the replica will be
required each time the schema is updated on the replicating server.

Replica servers must support the LDAP Version 3 protocol.

Populating a replica
1. Either start the replica and replicating servers in maintenance mode or on each

of these LDAP servers use the SMSG LDAPSRV MAINTMODE ON command
to put these servers into maintenance mode.

2. Unload the replicating server’s directory contents if there are any entries. For
LDBM, use the ds2ldif utility (see “ds2ldif Utility” in z/VM: TCP/IP Planning and
Customization).

3. You should make sure the schema for the replica server is the same as the
schema for the replicating server.

If the replica and replicating server are both z/VM servers, the schema can be
unloaded from the replicating server using ds2ldif and reloaded into the
replica by using the administrator DN to run ldapmodify.

4. Using the administrator DN, run ldapadd to add a single replica entry into the
backend directory on the replicating server to identify the new replica being
populated.

Note that in order to load the replica entry, it is also necessary to load any
parent entries in the directory hierarchy in hierarchy order.

5. If the replicating server does not contain any entries, go to step 8.

6. Transport the LDIF file created in step 2 to the replica server’s location.

7. Load the LDIF file from 6 into the replica server. This can be done using the
administrator DN to run ldapadd to load the LDIF file.

8. Configure the replica (see next section).

9. Stop the replica server (if it is running) and then restart it in maintenance
mode. If it contains a replica entry that defines this server as a replica of itself,
use the administrator DN to run ldapdelete to remove that entry.

10. Use the LDAP server SMSG ldapsrv MAINTMODE OFF command on the
replica server and the replicating server to change these servers to normal
mode.

Configuring the replica
The key to a successful replica configuration rests in ensuring that the values in the
replica entry on the replicating server (master or peer) accurately represent the

Chapter 9. Replication 127

relevant values on the replica server (read-only or peer). Configuring the replica
involves specifying appropriate LDAP server configuration file option values to
identify:

v the IP address and port on which the replica server should listen for
communication from the replicating server

v the type of connection expected by the replicating server when it communicates
to the replica server, either over a non-secure or secure connection

v the DN and password used by the replicating server

The following table identifies the relationship between the attributes in the replica
entry on a z/VM LDAP replicating server and the configuration options on an IBM
replica server. The values specified for these options must be equivalent. An
example of what is meant by equivalent is when the replica server is listening on all
of its network interfaces, then replicaHost must specify either the corresponding
hostname or an IP address of one of the addresses.

Attribute in replica entry on
replicating server

Corresponding replica server configuration
option or command line parameter

replicaHost The hostname or IP address specified on the listen
configuration option or the -l LDAP server command
line parameter.

replicaPort The port number that is specified on the listen
configuration option or the -l LDAP server command
line parameter.

replicaUseSSL Use of ldaps:// in the prefix of the listen
configuration option or the -l LDAP server command
line parameter corresponds to TRUE for
replicaUseSSL; use of ldap:// corresponds to
FALSE.

replicaBindDn masterServerDN or peerServerDN configuration
option

replicaCredentials masterServerPW or peerServerPW configuration
option

Notes:

1. If the replica server is a non-IBM server, you should consult their documentation for
parameters that correspond to the parameters mentioned in the above table.

2. The value of the listen configuration option or –l command line parameter is an LDAP
URL. For additional information on the listen option, see “Step 7. Create and Customize
the LDAP Configuration File (DS CONF)” in z/VM: TCP/IP Planning and Customization..

3. It is recommended that the masterServerDN or peerServerDN be a DN that is
dedicated specifically to replication. It should not be used for any other operations.

4. The masterServer, masterServerDN, masterServerPW, peerServerDN, and
peerServerPW options must follow the database option for that backend in the LDAP
server configuration file.

5. Usage of the masterServerPW or peerServerPW configuration option is strongly
discouraged in production environments. See “The Administrator DN and the Replica
Server DN and Passwords” in z/VM: TCP/IP Planning and Customization for
alternatives.

6. The replicaCredentials attribute will be encrypted if the secretEncryption configuration
option is specified. This improves directory security since the bind password is no longer
stored in the directory in clear text. The secretEncryption configuration option is also
used to encrypt pending updates while they are stored in the replication queue.

128 z/VM: TCP/IP LDAP Administration Guide

LDAP update operations on read-only replicas
Update operations, such as add, delete, modify, and rename, should not be
performed against a read-only replica server. Changes must be made to the master
server, which then propagates the change to the read-only replica.

If update operations are sent to a read-only replica server, the replica server returns
a referral containing the value in the masterServer option in the backend section of
the LDAP server configuration file on the replica. The client then redirects the
request to the master server. After the master server makes the update, it
propagates the change to the read-only replica server, binding as the
replicaBindDn value in the replica entry corresponding to that replica server (the
replicaBindDn value must match the masterServerDN value in the replica server
configuration file).

See SSL/TLS and replication for information about securing a directory.

Changing a read-only replica to a master
When using read-only replication, it may become desirable to change one of the
read-only replicas to be the master. Perhaps the machine where the replica server
is installed is being upgraded, and you want this replica to now be the master LDAP
server.

The following procedure should be followed to change a read-only replica to a
master:

1. If the read-only replica is out of sync with the master server, use the procedure
described in Recovering from out-of-sync conditions.

2. Use the SMSG LDAPSRV MAINTMODE ON command on the master server
and on the replica server to put them into maintenance mode.

3. Using the administrator DN, unload all the replica entries (entries that describe
replica servers) from the master server. Use a search command similar to the
one shown in Searching a replica entry to create LDIF output containing the
replica entries for each suffix in the backend. In the LDIF output, remove the
replica entry for the read-only replica that is going to become the master. If the
master is going to become a read-only replica, add a replica entry for the
master in LDIF format to the output.

4. Using the administrator DN, run ldapdelete to remove the replica entries from
the master.

5. Using the administrator DN, run ldapadd to add the unloaded replica entries to
the replica server.

6. Stop the master and replica server.

7. Remove the masterServer, masterServerDN, and masterServerPW options
from the LDAP server configuration file on the replica.

8. If the original master is being eliminated, the database on the master is no
longer needed. Remove all the files in the LDBM database directory. See the
description of the databaseDirectory option in “Step 7. Create and Customize
the LDAP Configuration File (DS CONF)” in z/VM: TCP/IP Planning and
Customization for more information on the location of these files.

9. If the original master is going to become a replica, add the masterServer,
masterServerDN, and masterServerPW options to the LDAP server
configuration file on the original master. The masterServer value must point to
the new master. See “The Administrator DN and the Replica Server DN and

Chapter 9. Replication 129

Passwords” in z/VM: TCP/IP Planning and Customization for more information
on alternatives to specifying the masterServerPW option.

10. Start the new master server and new replica server (if the original master
became a replica server).

Peer to peer replication
z/VM LDAP peer replication server provides failover support. With this support, if a
LDAP server fails, the peer replication server can take over the role of the failing
LDAP server and it is then available to process LDAP operations.

A z/VM LDAP peer replication server is a read/write replication server that can send
and receive replicated entries. An LDAP server can have both peer replication
servers and read-only replication servers defined as replicaObject entries.

Note: Peer to peer replication uses the same replica entry attribute values as
shown in Replica server. The instructions in Adding replica entries in LDBM
also apply to peer replicas.

A peer to peer replication environment can be as simple as two LDAP servers that
are peers to each other, or as complicated as several LDAP servers, where some
servers are read-only replication servers and the other servers are peer replication
servers. Every peer replication server must replicate to all other peer and read-only
replication servers.

Server configuration
The peerServerDN and peerServerPW options in the backend section of the LDAP
server configuration file are used to configure peer to peer replication. See “Step 7.
Create and Customize the LDAP Configuration File (DS CONF)” in z/VM: TCP/IP
Planning and Customization for more information.

Note: Usage of the peerServerPW configuration option is strongly discouraged in
production environments. See “The Administrator DN and the Replica Server
DN and Passwords” in z/VM: TCP/IP Planning and Customization for
alternatives.

Conflict resolution
Minimal conflict resolution is done in a peer environment. For example, if peer
replication server A receives an update to entry E at the same moment that peer B
receives a delete of the same entry, replication can stall on server A. Ensure that
your peer servers are not receiving conflicting operations. To avoid replication
stalling, set up a replication error log to set aside replication errors. See Replication
error log for more information.

When a conflict occurs, a notification will be sent to the console and server log.

Adding a peer replica to an existing server
For failover support, it may be necessary for you to add a peer replica for a
backend to an existing server or set of servers. These servers can be standalone or
already actively replicating.

In order to add a peer replica for a backend to a z/VM LDAP server, you should do
the following:

130 z/VM: TCP/IP LDAP Administration Guide

1. Start the new peer replica in maintenance mode. The peer replica must have a
peerServerDN and peerServerPW defined in the backend section of the LDAP
server configuration file.

2. Stop the existing servers. For each existing server that is to become a peer
server, update its configuration file to include the peerServerDN and
peerServerPW configuration options. Restart the existing read-write servers in
maintenance mode. See “The Administrator DN and the Replica Server DN and
Passwords” in z/VM: TCP/IP Planning and Customization for alternatives to
specifying the password in the configuration file.

3. Prime the new peer replica with all the data from an existing server. You can
accomplish this by dumping the existing server’s directory (use ds2ldif) and
adding the data to the new peer replica (use ldapadd). Refer to Populating a
replica for more information.

4. Add a replica entry to the existing servers to point to the new peer replica.

5. Add a replica entry in the new peer replica pointing to the existing server that
was used to prime this server.

Note: If the existing server was a replicating server with replica entries defined
to it, those replica entries would have been copied to the new peer
replica in step 3 above. Ensure that this server does not contain a replica
entry that defines this server as a replica of itself.

6. Turn off maintenance mode on all servers.

The existing servers and the new peer replica are now peer read-write replicas.

Upgrading a read-only replica to be a peer replica of the master server
It may be necessary for you to upgrade a read-only replica for a backend to a peer
of its master, for example, if a peer of the master failed or further failover support is
needed.

You should do the following to change a read-only replica for a backend to a peer
replica:

1. Stop both the master server and the read-only replica.

2. Remove the masterServer, masterServerDN, and masterServerPW options
from the backend section of the LDAP server configuration file of the read-only
replica.

3. Add a peerServerDN and peerServerPW option to the backend section of each
server’s configuration file. The two servers will now be peer servers. See
“Establishing the Administrator DN and the Replica Server DN and Passwords”
in z/VM: TCP/IP Planning and Customization for alternatives to specifying the
password in the configuration file

4. Start both servers in maintenance mode.

5. In this backend, on the read-only replica being upgraded:

v Add a replica entry for each replica that this backend on the master server
points to (except the entry that previously pointed to the read-only replica that
is being upgraded). This can include both peer servers and read-only
replicas. Note that the master server might have other peer servers.

v Add a replica entry to point to the master.

6. On the master, ensure that the credentials are valid in the replica entry for the
read-only replica being upgraded.

7. Turn off maintenance mode on both servers.

Chapter 9. Replication 131

The read-only replica and the master server are now peer read-write replicas for the
backend.

Downgrading a peer server to read-only replica
It may be necessary for you to downgrade a backend from a peer server to a
read-only replica, for example, if a previously upgraded read-only replica is no
longer required to be a peer server, or to prevent out-of-sync conditions between
peer servers.

You should do the following to downgrade a peer server to a read-only replica:

1. Stop the peer server.

2. Remove the peerServerDN and peerServerPW options from the backend
section of the LDAP server configuration file.

3. Add masterServer, masterServerDN, and masterServerPW options to the
backend section of the peer replica configuration file. If there are more than one
peers, add a masterServer option for each one. See “The Administrator DN
and the Replica Server DN and Passwords” in z/VM: TCP/IP Planning and
Customization for alternatives to specifying the password in the configuration
file.

4. Ensure that the credentials are valid in the replica entry for the newly
downgraded peer server on all the replicating servers.

5. Start the server.

The peer server is now a read-only replica for the backend.

SSL/TLS and replication
SSL/TLS can be used to communicate between a replicating server (master or
peer) and a replica server (read-only or peer).

Replica server with SSL/TLS enablement
Set the replica server up for SSL/TLS just like a normal SSL/TLS server. It needs
its own public-private key pair and certificate, and the LDAP server configuration file
needs the standard SSL options (listen, sslKeyRingFile, and sslKeyRingFilePW).
See “Setting up for SSL/TLS” in z/VM: TCP/IP Planning and Customization for more
information.

Replicating server with SSL/TLS enablement
The replicating server acts like an SSL/TLS client to the replica server.

To set up the replicating server, you must:

1. Run the gskkyman utility, this time as if you were a client (see “SSL Certificate
Management” in z/VM: TCP/IP User’s Guide). You should use the same key
directory file that contains the replicating server’s key pair and certificate.
Receive the replica’s self-signed certificate and mark it as trusted.

2. In the LDAP server configuration file on the replicating server:
v Set sslKeyRingFile to the replica key directory file name created above.
v Set sslKeyRingFilePW to the password for the replica key directory file, or

set sslKeyRingPWStashFile to the file name where the password is
stashed.

3. In the replica entry for this replica:
v Set the replicaPort attribute to the replica’s secure port number.

132 z/VM: TCP/IP LDAP Administration Guide

v Set the replicaUseSSL attribute to TRUE.

See “Setting up for SSL/TLS” in z/VM: TCP/IP Planning and Customization for more
information.

Since the replicating server acts like an SSL/TLS client to the replica server, the
replicating server binds with the replica server. The bind method used is simple
bind. The SASL external bind method is not supported for replication.

Replication error log
A replication error log holds information on each error that occurs during replication.
To avoid stalling replication, the failed replication operation is taken off the
replication queue so that replication can continue with the next operation.
Depending on the error, the LDIF of the failed operation is set aside (added) to the
error log.

There is one error log for each replica of a backend. The file name of the error log
for a replica is specified by the ibm-slapdLog attribute in the replica entry for that
replica within the backend. The file name must be unique across the LDAP server.
If the attribute does not exist in the replica entry or the attribute has no value, no
errors are logged or replication operations set aside during this backend’s
replication to that replica. In this case, replication to that replica stalls every time a
failure occurs. The ibm-slapdReplMaxErrors attribute in the replica entry is set to
control how many failed replication operations can be set aside each time the LDAP
server is started before replication stalls for that replica.

The replication error log is used to correct replication in two ways:

v Use the error information to determine why replication failed.

v Invoke ldapmodify to run the error log on the replica server, after resolving the
replication problems. This performs the modifications that were set aside in the
error log, therefore, bringing the backend in the replica to the same level as in
the replicating server. You must bind as either the masterserverDN or
peerserverDN, depending on the type of replica.

The following is an example of an error log entry:
#(070102 03:35:46.910816): modify operation failed for cn=IBMUSER01,

O=YOUR COMPANY to 9.57.1.198:3389, rc=32
R004071 DN 'cn=IBMUSER01,O=YOUR COMPANY' does not exist (ldbm_process_request)
setting change aside.

dn: cn=IBMUSER01, O=YOUR COMPANY
changetype: modify
replace: sn
sn: Fred Smith

The error log consists of three messages, each using one or more lines:

1. Message one indicates when the error occurred, the entry, and replica server.

2. Message two is the error message returned by the replica server.

3. Message three indicates what is being done. If the operation is set aside, this
message is followed by the LDIF of the operation.

All non-LDIF information is prefixed with the comment character # so that the error
log can be run through ldapmodify to synchronize the two servers.

Chapter 9. Replication 133

Following is an example in which a replication error condition is logged but no
set-aside of the modification is needed:
#(070102 03:35:47.003707): delete operation failed for cn=IBMUSER01,

O=YOUR COMPANY to 9.57.1.198:3389, rc=32
R004071 DN 'cn=IBMUSER01,O=YOUR COMPANY' does not exist (ldbm_process_request)
Entry is already deleted, ignoring request.

There is no LDIF. Notice the third message indicates that request is being ignored.

Troubleshooting
If the replica server does not seem to be receiving updates from the replicating
server (master or peer), there are several possible reasons. Check the following
conditions for a possible quick fix:

v Check for messages from the replicating server.

v Verify that a replica entry for the replica server exists in the backend to be
replicated in the replicating server, and was specified correctly to match with the
replica server. If cn=localhost is used as the suffix for all replica entries for a
backend, perform an ldapsearch with a base of cn=localhost and a filter of
objectClass=*. Otherwise, perform an ldapsearch where the search base is the
suffix defined in the backend section of the LDAP server configuration file and
the filter is objectClass=replicaObject. If more than one suffix is configured for
LDBM, the search must be repeated using each suffix in the search base.

See z/VM: TCP/IP User’s Guide for more information about ldapsearch.

v Verify that the replicaHost value in the replica entry for that replica specifies the
machine on which the replica is running.

v Check that the values listed in the replica entry for that replica match those of the
replica server configuration. Specifically, the replicaPort, replicaBindDN, and
replicaCredentials should be verified.

v Check that the replicaUpdateTimeInterval specified in the replica entry for that
replica has been set correctly.

v Verify that the replica server is running by performing an ldapsearch against the
replica.

v Check that the default referral specified in the LDAP server configuration file in
the replica server points to the replicating server.

v If the replica entry replicaUseSSL attribute is set to TRUE, verify the replicaPort
attribute is set to the SSL port configured on the replica server. Verify the
sslKeyRingFile, and sslKeyRingFilePW or sslKeyRingPWStashFile values in
the LDAP server configuration file on the replica server and on the replicating
server are correct.

v When adding a large number of entries, ensure that the region size for the
replicating server is sufficient for replicating the entries to the replica. Entries on
the replicating server are kept in memory during replication. If the region size is
not sufficient, an out of memory condition can occur in the LDAP server. If
possible, set the region size on the replicating server to 0M (or unlimited). If that
cannot be done, set the region size to 14M (needed to run the LDAP server
itself) plus twenty times the size of the largest LDIF file that is to be added to the
replicating server.

The ibm-slapdLog and ibm-slapdReplMaxErrors attributes in a replica entry can
be used to configure a replication error log for this replica. If replication fails, the
error log holds all errors that occurred during replication and the LDIF for the set
aside replication operations.

134 z/VM: TCP/IP LDAP Administration Guide

Recovering from out-of-sync conditions
If a replica becomes out-of-sync with its replicating server for any reason, and
normal replication processing is not correcting the situation, it may be necessary to
reload the replica.

The following procedure should be followed to reload a replica:

1. Issue SMSG LDAPSRV MAINTMODE ON on the replicating sever and on
each of the replica servers to put them into maintenance mode.

2. Using the administrator DN, unload all the replica entries (entries that describe
replica servers) from the master server. Use a search command to create LDIF
output containing the replica entries for each suffix in the backend.

3. Using the administrator DN, run ldapdelete to remove the replica entries from
the master. This resets the replication information in the replicating server.

4. Stop all the replica servers.

5. Clear out the directory on each replica server. Remove all the files in the
LDBM database directory. See the description of the databaseDirectory
option in “Step 7. Create and Customize the LDAP Configuration File (DS
CONF)” in z/VM: TCP/IP Planning and Customization for more information on
the location of these files.

6. Run an unload utility on the replicating server. Use ds2ldif twice, once to
unload the schema entry and a second time to unload the LDBM directory
entries.

7. Start the replica servers in maintenance mode.

8. Using an administrator DN, run ldapmodify to load the schema unloaded from
the replicating server onto each replica.

9. On each replica, use ldapadd to load the directory data retrieved above from
the replicating server. ldapadd must be run using the administrator DN.

10. Using an administrator DN, run ldapadd to add the replica entries unloaded in
step 2 back into the replicating server.

11. Issue SMSG LDAPSRV MAINTMODE OFF to take the replicating server and
each replica out of maintenance mode.

Chapter 9. Replication 135

136 z/VM: TCP/IP LDAP Administration Guide

Chapter 10. Alias

Alias support provides a means for an LDBM directory entry to point to another
entry in the same directory. An alias entry can also be used to create a convenient
public name for an entry or subtree, hiding the more complex actual name of the
entry or subtree.

Alias support involves:

v Creating an alias entry which points to another entry

v Dereferencing during search: when a distinguished name contains an alias, the
alias is replaced by the value it points to and search continues using the new
distinguished name.

For example, you can create an alias entry to provide a simple name for the LDAP
department:
"ou=LDAPZOS,o=IBM"

The alias entry points to the actual LDAP department:
"ou=DEPTC8NG,ou=Poughkeepsie,o=IBM_US,o=IBM"

This provides easier access to the entries of the LDAP developers, using public
names such as:
"cn=kmorg,ou=LDAPZOS,o=IBM"

This name is dereferenced during search to:
"cn=kmorg,ou=DeptC8NG,ou=Poughkeepsie,o=IBM_US,o=IBM

and the information for that entry is returned.

Impact of aliasing on search performance
Usage of aliases in a directory can cause a large increase in the amount of
processing that takes place during search, even if no alias entries are actually
involved in the particular search that was requested. To minimize the impact to
search performance:

v Do not add aliases to the directory if they are not needed. There is no impact on
search if there are no aliases in the directory.

v Only perform a search with dereferencing when aliases are involved in the
search. Again, the impact on search is avoided if no dereferencing is requested.

Note: The search request from the LDAP client specifies whether to do
dereferencing. The default value for dereferencing varies between different
LDAP clients. If the default is to do dereferencing (this is the case with
some Java™ clients), make sure to specifically reset this value to do no
dereferencing when you issue search requests for which you do not want
to do dereferencing.

v If you do want to use aliases in a directory, use them efficiently to minimize the
number of alias entries. For example, use an alias entry for the root of a subtree
(such as the alias for a department entry in the example above) rather than
creating an alias entry for each individual entry within the subtree.

© Copyright IBM Corp. 2007, 2009 137

Alias entry
An alias entry contains:

v one of two object classes:

– aliasObject - AUXILIARY object class

– alias - STRUCTURAL object class.

Note: This requires an object class such as extensibleObject to allow the
naming attributes for the entry.

v aliasedObjectName attribute

– its value is the distinguished name that the alias points to

These object classes and attributes are always part of the LDAP server schema.

Below is an example of an alias entry:
dn: ou=LDAPZOS,o=IBM
objectclass: organizationalUnit
objectclass: aliasObject
ou: LDAPZOS
aliasedobjectname: ou=DeptC8NG,ou=Poughkeepsie,o=IBM_US,o=IBM

or
dn: ou=LDAPZOS,o=IBM
objectclass: alias
objectclass: extensibleobject
ou: LDAPZOS
aliasedobjectname: ou=DeptC8NG,ou=Poughkeepsie,o=IBM_US,o=IBM

Alias entry rules
An alias is a directory entry containing either the alias structural object class or the
aliasObject auxiliary object class. Both of these object classes require the
aliasedObjectName attribute (the aliasedEntryName alternate name can also be
used). The extensibleObject object class should also be specified if the alias
object class is used in order to add the RDN attributes for the alias entry.

An alias entry must be a leaf entry. This means that no ancestor of an entry can be
an alias entry. In addition, an alias entry cannot also be a referral entry. A suffix
entry can be an alias entry. In this case, the suffix will have no entries below it.

The value of the aliasedObjectName attribute does not have to be an existing
entry. However, an error will be returned when dereferencing the alias if the value of
the aliasedObjectName attribute does not refer to an entry in the same backend as
the alias entry. The value cannot be the distinguished name of the alias entry; in
other words, an alias entry cannot dereference to itself.

Dereferencing an alias
All or part of a distinguished name (DN) can be an alias. Dereferencing a DN
consists of the systematic replacement of an alias within the DN by the value of the
aliasedObjectName attribute of the alias. This creates a new DN that must then be
checked to see if it contains an alias that needs to be dereferenced. This process
continues until the final dereferenced DN contains no alias within its name. An error
will be returned if a circular chain is detected, that is, when a particular alias entry is

138 z/VM: TCP/IP LDAP Administration Guide

encountered more than once. The final dereferenced DN must be the DN of an
entry in the same backend as the original DN. This entry must either exist or be
under a referral entry.

Alias dereferencing is performed only during search operations. Alias entries are not
dereferenced for any other LDAP operation.

Aliases are not dereferenced when performing a null-based subtree search since all
entries in all LDBM backends are included in the search scope.

Duplicate objects will not be returned by a search operation. Duplicate objects can
be encountered during a search if an alias points to an entry higher in the tree or if
two aliases point to the same entry.

Dereferencing is only used to determine the entries that will be included in the
search. The entries actually returned as search results must match the search filter.
The DN of returned entries is the dereferenced DN. Using the above example, a
search for ″cn=John Doe, ou=LDAPZOS,o=IBM″ will return an entry with DN
″cn=John Doe,ou=DeptC8NG,ou=Poughkeepsie,o=IBM,c=US″ if the ″cn=John
Doe,ou=DeptC8NG,ou=Poughkeepsie,o=IBM,c=US″ entry matches the search filter.

Access checking is not performed when dereferencing an alias entry. Normal
access checking will be performed for the dereferenced entry. Therefore, a search
can dereference aliases even though the requestor might not have any permissions
to those alias entries.

Dereferencing during search

Dereference options
A flag value controls what alias dereferencing will be done during a search
operation. This flag is sent by the client on the search request. The flag can have
one of four values:

LDAP_DEREF_NEVER (0)
do not dereference any alias entries. Alias entries encountered during the
search operation are processed as ’normal’ entries and are returned if they
match the search filter.

LDAP_DEREF_SEARCHING (1)
dereference alias entries within the scope of the search but do not
dereference the search base entry (if it contains an alias). The search base
is processed as a ’normal’ entry (even if it is an alias entry) and is returned
if it matches the search filter and is in the search scope.

LDAP_DEREF_FINDING (2)
dereference the search base entry (if it contains an alias) but do not
dereference any other alias entries within the search scope. Alias entries
within the search scope of the derefereneced base are processed as
’normal’ entries and are returned if they match the search filter.

LDAP_DEREF_ALWAYS (3)
dereference the search base entry (if it contains an alias) and dereference
alias entries within the scope of the search. All alias entries encountered
during the search operation are dereferenced.

Chapter 10. Alias 139

Dereferencing during finding the search base
In a search request with LDAP_DEREF_FINDING or LDAP_DEREF_ALWAYS,
dereferencing the search base just establishes a new search base. The results are
equivalent to those from a search request that specifies the new base is its base.

Dereferencing during searching in subtree searches
In a search request with LDAP_DEREF_SEARCHING or LDAP_DEREF_ALWAYS
and subtree scope, dereferencing each entry under the base produces additional
bases of subtrees to be searched. The aliases under each additional base are also
dereferenced during search to find yet more subtree bases, and so on. When all the
additional subtrees have been identified, the search filter is applied to all the
non-alias entries in all the subtrees and the entries that match the filter are
returned.

Dereferencing during searching in one-level searches
In a search request with LDAP_DEREF_SEARCHING or LDAP_DEREF_ALWAYS
and one-level scope, dereferencing each alias entry that is one level below the
search base yields additional entries to search (even though they are no longer one
level below the search base). The search filter is then applied to these additional
entries and to the non-alias entries that are one level below the search base and
the entries that match the filter are returned.

Dereferencing and root DSE subtree search
Aliases are never dereferenced when performing a subtree search starting at the
root DSE (this is also known as a null-based subtree search). All alias entries are
processed like ’normal’ entries, as if LDAP_DEREF_NEVER was specified.

Errors during dereferencing
The common dereferencing errors and the resulting return codes are:

v loop detected during dereferencing: LDAP_ALIAS_PROBLEM (x’21’)

v no entry in this backend for dereferenced DN: LDAP_ALIAS_DEREF_PROBLEM
(x’24’)

Alias examples
The following figure shows the directory structure used in the examples. The
dashed lines indicate aliases. The dashed oval indicates the position of an aliased
entry in the directory hierarchy, but the aliased entry does not actually exist.

140 z/VM: TCP/IP LDAP Administration Guide

Note: Fictitious attributetypes are used in the figure.

o=IBM,c=US

product=ZOSLDAP site=Pok ou=SG sw=SGProds

product=ZOSLDAP

subgroup=Unit Test

group=development

product=ZOSLDAP

aliasedObjectName:
product=ZOSLDAP, site=Pok,o=IBM,C=US

aliasedObjectName:
ou=SG,o=IBM,C=US

aliasedObjectName:
sw=SGProds,o=IBM,c=US

aliasedObjectName:
group=development,product=ZOSLDAP,

sw=SGProds,o=IBM,c=US

group=test

The following search examples show the entries that are returned for various
combinations of search base, search scope, and dereference option. The filter in
each example is ″objectclass=*″. Cases that are affected by alias dereferencing are
indicated with an ″*″.

Example #1: Perform a search from the base ″sw=SGProds, o=IBM, c=US″.
scope = base

v Returned entries with LDAP_DEREF_NEVER, LDAP_DEREF_SEARCHING,
LDAP_DEREF_FINDING, or LDAP_DEREF_ALWAYS specified:
"sw=SGProds, o=IBM, c=US"

scope = one-level

v Returned entries with LDAP_DEREF_NEVER, LDAP_DEREF_SEARCHING,
LDAP_DEREF_FINDING, or LDAP_DEREF_ALWAYS specified:
"product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

scope = subtree

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_FINDING
specified:
1. "sw=SGProds, o=IBM, c=US"
2. "product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
3. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
4. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
5. "subgroup=Unit Test, group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_SEARCHING or LDAP_DEREF_ALWAYS
specified

Figure 36. Alias example

Chapter 10. Alias 141

1. "sw=SGProds, o=IBM, c=US"
2. "product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
3. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
4. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US" (returned only once)

Example #2: Perform a search from the base ″site=Pok, o=IBM, c=US″.
scope = base

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
"site=Pok, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_FINDING or LDAP_DEREF_ALWAYS
specified:
"sw=SGProds, o=IBM, c=US"

scope = one-level

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
No entries returned

v * Returned entries with LDAP_DEREF_FINDING or LDAP_DEREF_ALWAYS
specified:
"product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

scope = subtree

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
"site=Pok, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_FINDING specified:
1. "sw=SGProds, o=IBM, c=US"
2. "product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
3. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
4. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
5. "subgroup=Unit Test, group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_ALWAYS specified:
1. "sw=SGProds, o=IBM, c=US"
2. "product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
3. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
4. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US" (returned only once)

Example #3: Perform a search from the base ″product=ZOSLDAP, o=IBM, c=US″.
scope = base

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
"product=ZOSLDAP, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_FINDING or LDAP_DEREF_ALWAYS
specified:
"product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

scope = one-level

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
No entries returned

v * Returned entries with LDAP_DEREF_FINDING or LDAP_DEREF_ALWAYS
specified:
1. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
2. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

scope = subtree

142 z/VM: TCP/IP LDAP Administration Guide

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
"product=ZOSLDAP, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_FINDING specified:
1. "product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
2. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
3. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
4. "subgroup=Unit Test, group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_ALWAYS specified:
1. "product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
2. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
3. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US" (returned only once)

Example #4: Perform a search from the base ″group=test, product=ZOSLDAP,
o=IBM, c=US″.
scope = base

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
Error - LDAP_NO_SUCH_OBJECT

v * Returned entries with LDAP_DEREF_FINDING or LDAP_DEREF_ALWAYS
specified:
"group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

scope = one-level

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
Error - LDAP_NO_SUCH_OBJECT

v * Returned entries with LDAP_DEREF_FINDING specified:
"subgroup=Unit Test, group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_ALWAYS specified:
"group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

scope = subtree

v Returned entries with LDAP_DEREF_NEVER or LDAP_DEREF_SEARCHING
specified:
Error - LDAP_NO_SUCH_OBJECT

v * Returned entries with LDAP_DEREF_FINDING specified:
1. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
2. "subgroup=Unit Test, group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

v * Returned entries with LDAP_DEREF_ALWAYS specified:
1. "group=test, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"
2. "group=development, product=ZOSLDAP, sw=SGProds, o=IBM, c=US"

Chapter 10. Alias 143

144 z/VM: TCP/IP LDAP Administration Guide

Chapter 11. Change logging

The change log is a set of entries in the directory that contain information about
changes to objects. Depending on configuration options, information about a
change to an LDBM entry, to the LDAP server schema entry (cn=schema), or to an
object controlled by an application (for example, a RACF user, group, or user-group
connection profile) can be saved in a change log entry. An LDAP search operation
can be used to retrieve change log entries to obtain information about what
changes have taken place.

Each LDAP server contains one change log. The change log entries are created in
the same order as the changes are made and each change log entry is identified by
a change number value, beginning with 1, that is incremented each time a change
number is assigned to a change log entry. Therefore, the change number of a new
change log entry is always greater than all the change numbers in the existing
change log entries.

The change log is implemented in the GDBM backend. The change log uses a
hard-coded suffix, cn=changelog. This suffix is a semi-reserved name: when the
GDBM backend is configured, the change log root (cn=changelog) must not overlap
any suffix in any SDBM or LDBM backend, and the change log suffix cannot be the
source or target of a rename operation. If GDBM is not configured, the user can
use cn=changelog as a ’normal’ suffix in an SDBM or LDBM backend, however, we
do not recommend this because that suffix will have to be renamed to avoid an
overlap if GDBM is configured in the future.

Change logging is enabled by configuring GDBM in the LDAP server configuration
file. Change log processing is controlled by configuration options in the GDBM
backend. The changeLogging configuration option turns change logging on/off.
The changeLogMaxEntries and changeLogMaxAge configuration options
determine when removal of old change log entries takes place. See “Configuring
the LDAP Server” in z/VM: TCP/IP Planning and Customization for more
information. If none of these configuration options is specified in the GDBM section,
the default is to start change logging with no limits on the size of the change log.

The changeLoggingParticipant configuration option can be used to specify if an
LDBM backend wants change log entries to be created for changes to entries in the
LDBM backend. Similarly, the configuration option can be specified in the GDBM
backend to determine if a change log entry should be created for a change to the
LDAP server schema. If the option is not specified for an LDBM or GDBM backend,
the default is to create change log entries for changes to that LDBM backend or to
the LDAP server schema.

If the GDBM backend is configured and the cn=changelog root entry does not exist
in the GDBM backend when the server is started, the LDAP server generates the
root entry. The root entry is created with an ACL that allows only the administrator
to access the change log. The ACL is propagated to the change log entries. The
user needs to use an LDAP modify operation to change this ACL to an appropriate
ACL for his usage of the change log. The aclEntry and entryOwner attributes are
the only attributes that can be modified. The aclPropagate and ownerPropagate
attributes will always be TRUE.

Modifications to the change log are not logged. This means that no change
sequence number will be returned for a persistent search request issued for the
change log (cn=changelog).

© Copyright IBM Corp. 2007, 2009 145

Configuring the GDBM backend
In a GDBM configuration:

1. There can be at most one GDBM backend in the configuration file.

2. The suffix option can not be specified in the GDBM backend.

3. If the changeLoggingParticipant option is specified, it controls whether a
change log entry is created for a change to the LDAP server schema. Change
log entries are never created for any changes to GDBM entries, including the
suffix entry.

Configuring a file-based GDBM backend
When configuring a file-based GDBM backend, the following configuration file
options are required:
database GDBM GLDBGD31 [name]

The commitCheckpointEntries, commitCheckpointTOD, databaseDirectory,
fileTerminate, filterCacheBypassLimit, filterCacheSize, include, multiserver,
persistentSearch, readOnly, sizeLimit, and timeLimit are options can also be
specified in the GDBM configuration section. The changeLogging,
changeLoggingParticipant, changeLogMaxAge, and changeLogMaxEntries
configuration options can be specified to control change logging activity. See
“Configuring the LDAP Server” in z/VM: TCP/IP Planning and Customization for
more information on these options.

The GDBM database is identical to an LDBM database and is created in the same
way.

If you do not want to create change log entries for changes to entries within an
LDBM, add the following configuration option to that backend section. You can add
the same option to the GDBM section of the configuration file to stop the creation of
change log entries for changes to the LDAP server schema entry:
changeLoggingParticipant off

Additional required configuration
Additional configuration is required for RACF to be able to log changes to a RACF
user, group, or connection:

v The SDBM backend must be configured. The SDBM suffix is needed to create a
DN for the change log entry for a modification to a RACF user, group, or
connection. SDBM is also needed to retrieve the RACF user’s new password or
other changed fields.

v LDAP Program Call support must be enabled in the LDAP server containing the
change log. To do this, add the following option to either the global section of the
configuration file or to the command used to start the LDAP server:
listen ldap://:pc

Note: This listen parameter for LDAP Program Call support is in addition to any
other listen parameters you have specified.

There is no additional configuration needed to log changes to an LDBM entry or to
the LDAP server schema entry. If you do not want to create change log entries for
changes to entries within an LDBM, add the following configuration option to that

146 z/VM: TCP/IP LDAP Administration Guide

|
|

backend section. You can add the same option to the GDBM section of the
configuration file to stop the creation of change log entries for changes to the LDAP
server schema entry:
changeLoggingParticipant off

When changes are logged
Change log records can be created when the change logging is activated and the
GDBM backend is not in read-only mode.

RACF changes
An extended operation, changeLogAddEntry, is provided to allow an application to
log changes to data that it controls. The initial use of this interface is by RACF to
log changes to a RACF user, group, or user-group connection profile when the
profile is added, modified, or deleted. The RACF changes can be driven through the
LDAP server or be made directly to RACF. For a user password or password
phrase change, RACF includes information that the password or password phrase
changed in the change log entry. For other user changes, RACF does not provide
specific field information at this time.

The creation of a change log entry when using this interface is entirely separate
from the change to RACF, even if the RACF change is made using LDAP. The
result is that a RACF change can occur without a change log entry being created
(for example, if the LDAP server is not running or if the change log entry creation
fails).

LDBM and schema changes
If change logging is activated, each add, modify, delete, or modify DN operation of
an entry in any LDBM backend or modify of the LDAP server schema entry results
in the creation of a change log entry, with the exception of the following:

v If the changeLoggingParticipant off option in the LDAP server configuration file
is specified for this backend, then no changes in this backend are logged. The
option can be specified for the GDBM backend to stop logging changes to the
LDAP server schema entry.

The change log entry is created after the change to the LDBM backend entry or the
LDAP server schema has been committed. This change is not rolled back if the
change log record can not be created.

Change log schema
The following object classes and their attributes define a change log entry. These
object classes and attributes are always in the LDAP server schema.

v objectclass: changeLogEntry

changenumber
an integer assigned to this change log entry

targetDN
the DN to which the change was applied. For RACF, this DN is created from
a userid and/or groupid passed in by RACF and the SDBM suffix.

changeType
add | modify | delete | modrdn

Chapter 11. Change logging 147

changeTime
the time stamp of when the change is made (not when this entry is created)

changes
the added entry or the modifications, in LDIF format. This is fully supported
for change log entries created by LDBM and the LDAP server schema.
However, the values for the userPassword, secretKey, and
replicaCredentials attributes are replaced with *ComeAndGetIt* in the
change log entry. For change log entries created by RACF, this attribute is
only present when a RACF user password is changed, and contains either
comeAndGetIt or *NoEnvelope*, for example:
replace: racfPassword
racfPassword: *ComeAndGetIt*
-

newRDN
the new RDN specified in an LDBM modify DN operation

deleteOldRdn
a boolean indicating if the old RDN was deleted in an LDBM modify DN
operation

newSuperior
the new superior distinguished name specified in an LDBM modify DN
operation

v objectclass: ibm-changelog

ibm-changeInitiatorsName
the DN of the entity that initiated the change. For RACF, this DN is created
from a userid passed in by RACF and the SDBM suffix.

Note: If a RACF user’s password or password phrase is changed using the
currentvalue/newvalue support on a bind to the SDBM backend or on
a bind using native authentication, the ibm-changeInitiatorsName
value is created from the userid under which the LDAP server is
running (and not the bound user).

The change log root entry and change log entries also have the standard
operational attributes: the ACL attributes, creatorsname, createtimestamp,
modifiersname, modifytimestamp, and ibm-entryuuid (change log root only).

Change log entries
The change log consists of:

v One root (suffix) entry, named cn=changelog

v One or more leaf entries, named changenumber=nnn,cn=changelog

root entry
The change log root entry is generated by the LDAP server, when change
logging is first enabled. The root entry cannot be created, renamed, or
deleted by the user. The generated root entry contains a propagated ACL
that allows only the administrator to access the change log. An
appropriately authorized user can modify the root entry to change the ACL.
Operations on the change log root are not replicated and do not result in
the creation of a change log entry.

The generated root entry is:

148 z/VM: TCP/IP LDAP Administration Guide

dn: cn=changelog
objectclass: container
cn: changelog
aclentry: group:cn=Anybody
aclPropagate: TRUE
entryowner: access-id:adminDN
ownerProgagate: TRUE

The change log root entry should be modified using the modify operation to
set access control for the change log. Only the aclEntry and entryOwner
attributes can be modified. The aclEntry and entryOwner attributes can be
entirely deleted, in which case the default ACL is used. See Default ACLs
with LDBM for more information.

leaf entry
Each change log entry is created as a leaf entry directly under the change
log root entry, using the changeLogEntry and ibm-changelog
objectclasses and attributes as described above.

v Change log entries are only created by the LDAP server. The user
cannot directly add a change log entry. Also, the user cannot modify or
rename a change log entry. Change log entries inherit the ACL of the
change log root entry.

v Change log entries are deleted by the LDAP server when the change log
is trimmed due to reaching a limit specified by the
changeLogMaxEntries and changeLogMaxAge options in the
configuration file. Change log entries can also be deleted by the user
through a normal delete operation.

v User operations (search, compare, delete) on change log entries are
allowed as long as change logging is enabled (the GDBM backend is
configured), even if change logging is off. Add and trim operations by the
LDAP server are not performed when change logging is off.

v If the GDBM backend is in read-only mode, delete and modify operations
are not allowed. Add and trim operations by the LDAP server are not
performed.

v Operations on change log entries are not replicated and do not result in
the creation of change log entries.

The following is an example of a change log entry created by RACF:
dn: CHANGENUMBER=1815,CN=CHANGELOG
objectclass: CHANGELOGENTRY
objectclass: IBM-CHANGELOG
objectclass: TOP
changenumber: 1815
targetdn: RACFID=KEN,PROFILETYPE=USER,CN=MYRACF
changetime: 20030611161820.374472Z
changetype: MODIFY
changes: replace: racfPassPhrase
racfPassPhrase: *ComeAndGetIt*
-

ibm-changeinitiatorsname: RACFID=SUADMIN,PROFILETYPE=USER,CN=MYRACF

Searching the change log
The change log can be searched using the standard LDAP search facilities.

Chapter 11. Change logging 149

v You can use any attribute in the search filter. A common search is with a
″changenumber >= nnn″ filter, where nnn is the largest changenumber value that
was retrieved the previous time the search was done (the changenumber=nnn
entry is retrieved again to ensure that the next part of the change log has not
been trimmed).

v The change log entries matching the search filter are returned in increasing
changenumber order.

v You cannot depend on there being change log entries for all consecutive change
numbers. Some change numbers might be skipped.

v The change log (including the root entry) can be searched as long as change
logging is enabled (the GDBM backend is configured), even if change logging is
off.

Passwords in change log entries
To avoid including passwords in the changes attribute of a change log entry, the
value of the userpassword, secretkey, replicacredentials, and racfpassword
attributes is replaced by *ComeAndGetIt*. You can use a search command to
retrieve the password. For a RACF password, see Chapter 5, “Accessing RACF
information,” on page 59 for more information.

Unloading and loading the change log
The unload utility (ds2ldif) cannot be used to unload the contents of the change
log. You should use the search operation to do this. Change log entries cannot be
loaded into the change log. Add operations fail when processing change log entries.

Trimming the change log
When change logging is on, the LDAP server periodically trims the change log
based on the limits set in the LDAP server configuration file.

If a change log entry exceeds the age limit set using the changeLogMaxAge
configuration option, it is removed from the log.

If the number of change log entries exceeds the limit set using the
changeLogMaxEntries configuration option, the change log entries with the lowest
changenumber values are removed. The number of entries that are removed
depends on how GDBM is configured.

Entries are removed until the number of entries remaining is at the limit.

Change log information in the root DSE entry
The following attributes in the root DSE entry allow applications to determine the
location of the change log and effectively use it. The attributes appear whenever
change logging is enabled (the GDBM backend is configured), whether or not
change logging is currently on.

changelog=CN=CHANGELOG
the location of the change log

firstchangenumber=nnn
the lowest change number currently in use in the change log. A zero indicates
no change log entries.

150 z/VM: TCP/IP LDAP Administration Guide

lastchangenumber=nnn
the highest change number currently in use in the change log. A zero indicates
no change log entries.

How to set up and use the LDAP server for logging changes
1. Update the LDAP server configuration file:

a. Add the GDBM backend section, including a change log size and age limit if
desired.

b. If you plan to log changes to RACF users, groups, and user-group
connections, you must also:

Add the SDBM backend section. Following is an example:
database sdbm GLDBSD31
suffix cn=myRacf

Enable the PC Callable support (used by RACF to add change log entries to
the LDAP server) by specifying the following option in the global section of
the configuration file:
listen ldap://:pc

c. If you do not want to log changes to entries in an LDBM backend or to the
LDAP server schema entry, add the following option to the LDBM or GDBM
backend section (the GDBM backend controls change logging for the
schema entry):
changeLoggingParticipant off

2. If you plan to log changes to RACF users, groups, and connections, perform the
RACF configuration required to support creation of an LDAP change log entry
for RACF changes to those profiles. If you plan to retrieve RACF password or
password phrase envelopes, you need to perform the RACF configuration
required to support creation and retrieval of the password or password phrase
envelopes. See z/VM: RACF Security Server Security Administrator’s Guide.

3. Restart the LDAP directory server. You will see the GDBM configuration options
are displayed.

For a file-based GDBM backend, this will look similar to:
database GDBM GLDBGD31 GDBM-0002
changeLogging: on
changeLogMaxAge: 86400
changeLogMaxEntries: 1000
changeLoggingParticipant: on
commitCheckpointEntries: 10000
commitCheckpointTOD: 00:00
databaseDirectory: /var/ldap/gdbm
fileTerminate: recover
persistentSearch: off
readOnly: off
sizeLimit: 1000
suffix 1: CN=CHANGELOG
timeLimit: 3600

If GDBM fails to start, the following message is issued:
GLD1106E GDBM-0002 backend initialization failed.

4. At this point, change logging is started. Depending on your configuration, a
change to a RACF user, group, or connection, or to an LDBM entry, or to the
LDAP server schema entry will result in the creation of a change log entry in the
LDAP server.

5. If desired, modify the ACL on the change log root entry, cn=changelog, for your
usage of the change log. The initial ACL restricts client access to the change log
to the LDAP administrator.

Chapter 11. Change logging 151

For example, to give read access to the change log to RACF user CLREADER,
create an ldif file, cl.ldif, similar to the following:
dn: cn=changelog
changetype: modify
add: aclentry
aclentry:access-id:racfid=clreader,profiletype=user,cn=myRacf:normal:rsc:
sensitive:rsc:critical:rsc:system:rsc
-

You should then modify the change log ACL by issuing a modify command
similar to the following:
ldapmodify -h ldaphost -p ldapport -D adminDn -w adminPw -f cl.ldif

6. You can search, delete, and compare change log entries using the LDAP client
interfaces and command line utilities. In particular, all change log entries can be
viewed using a search similar to the following:
ldapsearch -h ldaphost -p ldapport -D adminDn
-w adminPw -b "cn=changelog" "objectclass=*"

Part of the output from this search would look like:
cn=changelog
objectclass=top
objectclass=container
cn=changelog

CHANGENUMBER=1,CN=CHANGELOG
objectclass=CHANGELOGENTRY
objectclass=IBM-CHANGELOG
objectclass=TOP
changenumber=1
targetdn=RACFID=U2,PROFILETYPE=USER,cn=myRacf
changetime=20030611204814.257756Z
changetype=MODIFY
changes=replace: racfPassword
racfPassword: *ComeAndGetIt*
-

ibm-changeinitiatorsname=RACFID=SUSET3,PROFILETYPE=USER,cn=myRacf

7. If the changes attribute of a change log entry contains any of the following
lines:
racfPassword: *NoEnvelope*
racfPassword: *ComeAndGetIt*
userpassword: *ComeAndGetIt*
replicacredentials: *ComeAndGetIt*
secretkey: *ComeAndGetIt*

then a password in the RACF user profile, LDBM entry was changed. If the
value is *ComeAndGetIt*, then you can try to retrieve the actual password value.
See “Passwords in change log entries” on page 150 for information on retrieving
passwords.

8. The LDAP root DSE entry contains useful information about the LDAP change
log, including its suffix, and the lowest and highest change numbers currently in
use. A command similar to the following one obtains this information:
ldapsearch -h ldaphost -p ldapport -D adminDn
-w adminPw -s base -b "" "objectclass=*"

Part of the output from this search would look like:
changelog=CN=CHANGELOG
firstchangenumber=1
lastchangenumber=202

152 z/VM: TCP/IP LDAP Administration Guide

Note: The LDAP server occasionally skips one or more change numbers, so it
cannot be assumed that there is a change log entry for every number
between 1 and 202. In addition, skips are created if you delete a change
log entry that does not have the lowest number. Change numbers that
are generated by the LDAP server are not guaranteed to be consecutive,
but will always increase.

Chapter 11. Change logging 153

154 z/VM: TCP/IP LDAP Administration Guide

Chapter 12. Referrals

Referrals provide a way for servers to refer clients to additional directory servers.
With referrals you can:
v Distribute namespace information among multiple servers
v Provide knowledge of where data resides within a set of interrelated servers
v Route client requests to the appropriate server

Following are some of the advantages of using referrals:
v Distribute processing overhead, providing primitive load balancing
v Distribute administration of data along organizational boundaries
v Provide potential for widespread interconnection, beyond an organization’s own

boundaries.

This topic describes how to create referral entries in an LDBM backend and how to
configure a default referral for the LDAP server.

A referral entry can be added to an LDBM backend to indicate that the backend
does not contain that entry or any entries below it and to identify another LDAP
server that may contain those entries. A referral entry returns referral information to
the LDAP client if the target of a client operation is at or below the referral entry or
if a search operation includes the referral entry within its search scope.

A default referral can be added to the LDAP server configuration file to identify
another LDAP server that may contain entries that do not fall within any of the
suffixes in this LDAP server. If the target of an operation is not at or below any
suffix defined in the LDAP server, the LDAP server returns the default referral to the
client.

Also described in This topic is how to associate multiple servers using referrals and
an example of associating a set of servers through referrals and replication (see
Chapter 9, “Replication”).

Using the referral object class and the ref attribute
The referral object class and the ref attribute are used to facilitate distributed name
resolution or to search across multiple servers. The ref attribute appears in an entry
in the referencing server. The value of the ref attribute points to the corresponding
entry maintained in the referenced server. While the distinguished name (DN) in a
value of the ref attribute is typically that of an entry in a naming context below the
naming context held by the referencing server, it is permitted to be the distinguished
name of any entry. A multi-valued ref attribute may be used to indicate different
locations for the same resource. If the ref attribute is multi-valued, all the DNs in
the values of the ref attribute should have the same value.

A referral entry must be a leaf entry. This means that no ancestor of an entry can
be a referral entry. In addition, a referral entry cannot also be an alias entry.

Creating referral entries
Following is an example configuration that illustrates the use of the ref attribute.

© Copyright IBM Corp. 2007, 2009 155

In the example, Server A holds references to two entries: o=ABC,c=US and
o=XYZ,c=US. For the o=ABC,c=US entry, Server A holds a reference to Server B and
for the o=XYZ,c=US entry, Server A holds references to two equivalent servers,
Server C and Server D.

The recommended setup of referrals is to structure the servers into a hierarchy
based on the subtrees they manage. Then, provide “forward” referrals from servers
that hold higher information and set the default referral to point back to its parent
server.

Associating servers with referrals
In order to associate servers through referrals:
v Use referral entries to point to other servers for subordinate references
v Define the default referral to point somewhere else, typically to the parent server

These steps are defined below.

Pointing to other servers
Use referral entries to point to the other servers for subordinate references which
are portions of the namespace below this server which are not serviced directly.

Referral entries are created in LDBM backends. Referral entries consist of:

dn Specifies the distinguished name. It is the portion of the namespace served
by the referenced server.

objectclass
Specifies referral. Also include the object class extensibleObject.

ref

Specifies the location of the referenced server. There is no required format
for the value, however, the z/VM LDAP client can only follow a ref value
which is in LDAP URL format. A LDAP URL has one of the following
formats:
ldap://hostname:port/DN
ldaps://hostname:port/DN

Server A

dn: o=ABC,c=US

ref: ldap://hostB/o=ABC,c=US

objectclass: referral
objectclass: extensibleObject

dn: o=XYZ,c=US

ref: ldap://hostC/o=XYZ,c=US
ref: ldap://hostD/o=XYZ,c=US

objectclass: referral
objectclass: extensibleObject

Server B

dn: o=ABC,c=US
o: ABC
other attributes

Server C

dn: o=XYZ,c=US
o: XYZ
other attributes

Server D

dn: o=XYZ,c=US
o: XYZ
other attributes

Figure 37. Example using ref attribute

156 z/VM: TCP/IP LDAP Administration Guide

The default port (389 for a non-SSL connection or 636 for an SSL
connection) is used if a port is not specified as part of the LDAP URL. The
DN of the referral entry is used if a DN is not specified as part of the LDAP
URL. The ldap:// form is for a non-SSL connection while the ldaps:// form
is for an SSL connection. The ldaps:// form is required if you are using
non-standard ports and want to allow SSL connections to the referenced
server. The DN value in the LDAP URL should match the DN of the referral
entry. The ref attribute may be multi-valued, with each value specifying the
LDAP URL of a different server. When multiple values are used, each LDAP
URL should contain the same DN, and each server should hold equivalent
information for the portion of the namespace represented by the DN. Note
that you cannot specify a 0-length value for the ref attribute.

The z/VM LDAP server automatically adds the extensibleObject object class to a
referral entry if it is not specified. This allows the RDN attributes to be added to the
referral entry.

Following is an example:
dn: o=IBM,c=US
objectclass: referral
objectclass: extensibleObject
ref: ldap://Host1:389/o=IBM,c=US
ref: ldap://Host2:389/o=IBM,c=US
ref: ldap://Host3:1389/o=IBM,c=US

An LDBM backend can contain any number of referral entries in its directory.

Defining the default referral
Define the default referral to point to another server which services other portions of
the namespace unknown to the referencing server. The default referral can be used
to point to:
v The immediate parent of this server (in a hierarchy)
v A “more knowledgeable” server, such as the uppermost server in the hierarchy
v A “more knowledgeable” server which possibly serves a disjoint portion of the

namespace.

The default referral is specified using the referral option in the LDAP server
configuration file and applies to all backends in the LDAP server. The value of the
option must be an LDAP URL. Multiple default referrals may be specified. However,
each one specified is considered equivalent; that is, each server referenced by a
default referral should present the same view of the namespace to its clients.

The default referral LDAP URL does not include the DN portion and a DN, if
specified, is ignored. The default port (389 for a non-SSL connection or 636 for an
SSL connection) is used if a port is not specified as part of the LDAP URL. The
ldap:// form is for a non-SSL connection while the ldaps:// form is for an SSL
connection. The ldaps:// form is required if you are using non-standard ports and
want to allow SSL connections to the referenced server. Following is an example:
referral ldap://host3.ibm.com:999

SSL/TLS note: A non-secure client referral to a secure port is not supported. Also,
a secure client referral to a non-secure port is not supported.

Chapter 12. Referrals 157

Processing referrals
When LDAP clients request information from LDAP servers which do not hold the
needed data, servers can pass back referral URLs which indicate one or more other
servers to contact. The clients can then request the information from the referenced
server. The z/OS client API, by default, chases referrals returned from servers.
However, client applications can suppress referral chasing through the
ldap_set_option() API. In this case, the application retrieves the referral from the
LDAP client and processes it within the application. This option’s scope is the LDAP
handle, so a client could open multiple connections to one or more servers, some of
which would chase referrals automatically, and some of which would not.

Servers present the referral URLs differently depending on the LDAP protocol
version being used by the client. Referrals are presented to LDAP Version 2 clients
in the error string, as the protocol does not provide a specific mechanism for
indicating referrals. In LDAP Version 3, protocol elements are specifically defined to
allow servers to present referral information to clients.

Using LDAP Version 2 referrals
Referrals are not supported by the LDAP Version 2 protocol. In order to provide
referral information to LDAP Version 2 clients, the referral information is returned as
part of the error string in the result message. Since clients do not generally examine
the error string for results indicating LDAP_SUCCESS, the LDAP server returns
LDAP_PARTIAL_RESULTS instead of LDAP_SUCCESS if referral information is
present in the error string. Referral information may be present for any result other
than LDAP_SUCCESS.

The referral information in the error string is returned as follows, where ’\n’ indicates
a newline character:
Referral:\n
ldap://hostname:port/DN\n
...

where Referral: is followed by a new line character (\n) and ldap://
hostname:port/DN\n is an LDAP URL followed by a new line character. The ellipses
(...) indicate a list of multiple referrals; that is, more LDAP URLs followed by new
line characters.

Limitations with LDAP Version 2 referrals
Multiple referrals are only presented for partial search results when it is necessary
to contact more than one additional server to complete the entire request. This
would indicate that multiple referral entries were found in the referencing server that
matched the search criteria. If chasing referrals, the client contacts every server
presented in the list to continue the search request. For referral entries that have
multi-valued ref attributes, the server sends only one of the LDAP URLs to a client
using LDAP Version 2 protocol. This is because there is no provision for
distinguishing between equivalent servers to contact (as indicated by multi-valued
ref attributes) and multiple servers which must be contacted to complete a search
request.

A second limitation of referrals in LDAP Version 2 is that operations can sometimes
be ambiguous in their intent regarding whether the operation was targeted for “real”
entries in the namespace, as opposed to the referral entries themselves. For
searches, referral entries are only presented as referrals, since the usual intent of a
search is to look at the real entries in the namespace. Server administrators must
therefore use other means to examine existing referral entries, such as examining

158 z/VM: TCP/IP LDAP Administration Guide

the database, or reviewing ds2ldif output. For update operations, default referrals
for upward references are presented as referrals, so that read-only replica servers
can forward update operations to the master replica. However, subordinate
references indicated by a referral entry are not followed for update operations,
rather they operate on the referral entry itself. This is necessary to allow an
administrator the ability to delete or modify existing referral entries. Erroneous
changes caused by misdirected update operations are generally avoided through
access protection and schema rules.

Using LDAP Version 3 referrals
In LDAP Version 3, referrals are defined as part of the protocol. The LDAP Version
2 limitations mentioned above are overcome by elements of the protocol and
extensions to the protocol. There are two methods of passing back referral
information in the LDAP Version 3 protocol: referrals and search continuation
references.

If the target of a request is a referral entry or is below a referral entry, or if the
target does not fall within any of the suffixes in the LDAP server and a default
referral is configured, then a result code of LDAP_REFERRAL is presented by the
server to indicate that the contacted server does not hold the target entry of the
request. The referral field is present in the result message and indicates another
server (or set of servers) to contact. Referrals can be returned in response to any
operation request except unbind and abandon which do not have responses. When
multiple URLs are present in a given referral response, each one must be equally
capable of being used to progress the operation.

If the target of a search is found in the directory but a referral entry is encountered
during the rest of a one-level or subtree search, a referral is not returned. Instead,
one or more search continuation references are returned. Search continuation
references are intermixed with returned search entries. Each one contains a URL to
another server (or set of servers) to contact, and represents an unexplored subtree
of the namespace which potentially satisfies the search criteria. When multiple
URLs are present in a given search continuation reference, each one must be
equally capable of being used to progress the operation.

As mentioned earlier, the other limitation in LDAP Version 2 referral processing is
related to the inability of a client to specify whether a request was targeted for a
normal entry or a referral entry. For LDAP Version 3, this difficulty is overcome with
a protocol extension in the form of the manageDsaIT control. (Appendix B,
“Supported server controls” describes manageDsaIT in detail.) For typical client
requests where the control is absent, whenever the server encounters an applicable
referral entry while processing the request, either a referral or search continuation
reference is presented. When the client request includes this control, the server
does not present any referrals or search continuation references, but instead treats
the referral entries as normal entries. In this case, even superior references through
the use of default referrals are suppressed. The z/VM LDAP client operations
utilities support the -M option to indicate that the requestor is managing the
namespace, and therefore wishes to examine and manipulate referral entries as if
they were normal entries. See z/VM: TCP/IP User’s Guide for more information. An
exception to the processing described above is that referral entries are always
treated as normal entries during the second phase of a persistent search, even if
the manageDsaIT control is not specified on the persistent search request. See
PersistentSearch for more information.

Chapter 12. Referrals 159

Bind considerations for referrals
When LDAP clients chase referrals from one server to another, they typically need
to bind to the referenced server before redirecting the original request. If you
distribute your directory across multiple servers connected by referrals, you must
consider the capabilities of the applications which access your directory, how they
chase referrals, and how they can bind to the referenced servers.

For example, the LDAP operation utilities like ldapsearch and ldapmodify use the
bind DN and password specified on the utility invocation, both when binding to the
original target server and also when chasing referrals to other servers. If you want
the LDAP operation utilities to automatically chase referrals across servers, then the
same bind DN and password must be accepted on each of the servers connected
by referrals.

If you use an approach where there are no common bind identities, then your
applications will either be limited to unauthenticated access or they will require the
ability to bind appropriately to each server when chasing referrals.

Consider the following approaches:

1. Use unauthenticated access for reading information to avoid the need to bind
with a common identity. This makes sense if the data in the directory is general
reference information that does not need to be protected.

2. Establish an ’authentication’ backend for identity information that is the same on
each server. This could be an SDBM backend, where the common
authentication identities are in RACF, or an LDBM backend that is the same on
each server (replication could be used to ensure this). Access control over the
other entries in the referral servers uses the distinguished names from the
authentication backend to control access to the entries.

3. If you use the LDAP administrator DN to access the entries, configure the
administrator DN and password identically in each of the referral servers.

Example: associating servers through referrals and replication
Following are the steps involved in distributing the namespace using referrals.

1. Plan your namespace hierarchy.
country - US
company - IBM, Lotus
organizationalUnit - IBM Austin, IBM Endicott, IBM HQ

2. Set up multiple servers, each containing portions of the namespace.

160 z/VM: TCP/IP LDAP Administration Guide

Following is a description of each server:

Server A
Perhaps just a server used to locate other servers in the US. With no
other knowledge, clients can come here first to locate information for
anyone in the US.

Server B1
A hub for all data pertaining to IBM in the US. Holds all HQ information
directly. Holds all knowledge (referrals) of where other IBM data resides.

Server B2
A replica of Server B1.

Server C
Holds all IBM Austin information.

Server D
Holds all IBM Endicott information.

Server E
Holds all Lotus® information.

3. Set up referral entries to point to the descendents in other servers.

Server E
o=Lotus,c=US

Server C
ou=Austin,o=IBM,c=US

Server D
ou=Endicott,o=IBM,c=US

Server A
c=US

Server B2

Server B1

ou=HQ,o=IBM,c=US

o=IBM,c=US

Figure 38. Setting up the servers

dn: o=IBM,c=US
objectClass: referral
objectClass: extensibleObject
ref: ldap://ibm.com:389/o=IBM,c=US
ref: ldap://ibm.com:390/o=IBM,c=US

dn: o=Lotus,c=US
objectClass: referral
objectClass: extensibleObject
ref: ldap://lotus.com:389/o=Lotus,c=US

Pointer to Servers B1 and B2

Pointer to Server E

Figure 39. Server A database (LDIF input)

Chapter 12. Referrals 161

4. Servers can also define one or more default referrals which point to “more
knowledgeable” servers for anything that is not underneath them in the
namespace.

The default referrals go in the configuration file, not the backend.

Note: The default referral LDAP URLs do not include the DN portion.

5. Putting it all together.

Figure 41, Figure 42, Figure 43, and Figure 44 show these same six servers,
showing the referral entries in the database as well as the default referrals
which are used for superior references. Also included in Servers B1 and B2 are
sample definitions for replication, setting up Server B2 as a replica of Server B1.
This ensures that these two servers remains identical. Servers B1 and B2 are
located on the same system, but use different ports.

General Section

referral ldap://ibm.com:389
referral ldap://ibm.com:390

listen ldap://:789

ldbm database definitions

database ldbm GLDBLD31
suffix “ou=Endicott,o=IBM,c=US”

.

.

.

Figure 40. Server D configuration file

162 z/VM: TCP/IP LDAP Administration Guide

Server A: Services “c=US”
host name "US.white.pages.com”

Directory

dn: c=US

objectClass: country

dn: o=IBM,c=US

objectClass: referral
objectClass: extensibleObject
ref: ldap://ibm.com:389/o=IBM,c=US
ref: ldap://ibm.com:390/o=IBM,c=US

dn: o=Lotus,c=US
objectClass: referral
objectClass: extensibleObject
ref: ldap://lotus.com:389/o=Lotus,c=US

Server E: Services “o=Lotus,c=US”
host name "lotus.com"

Configuration File

referral ldap://US.white.pages.com:1234
listen ldap://:389

database
suffix "o=Lotus,c=US"

ldbm GLDBLD31

Directory

dn: o=Lotus,c=US

objectClass: organization

Configuration File

listen ldap://:1234

database
suffix "c=US"

ldbm GLDBLD31

Figure 41. Referral example summary (servers A and E)

Chapter 12. Referrals 163

Server B1: Services “o=IBM,c=US”
host name "ibm.com”

Configuration File

referral ldap://US.white.pages.com:1234

listen ldap://:389

database
suffix "o=IBM,c=US"
suffix "cn=localhost"

ldbm GLDBLD31

Directory

dn: cn=localhost

objectClass: container

dn: cn=ReplicaB2,cn=localhost

objectClass: replicaObject

replicaHost: ibm.com

replicaPort: 390

replicaBindDN: cn=Master

replicaCredentials: secret

dn: o=IBM,c=US

objectClass: organization

dn: ou=Austin,o=IBM,c=US

objectClass: referral

objectClass: extensibleObject

ref: ldap://austin.com:389/ou=Austin,o=IBM,c=US

dn: ou=Endicott,o=IBM,c=US

objectClass: referral

objectClass: extensibleObject

ref: ldap://endicott.com:789/ou=Endicott,o=IBM,c=US

dn: ou=HQ,o=IBM,c=US

objectClass: organizationalUnit

Figure 42. Referral example summary (server B1)

164 z/VM: TCP/IP LDAP Administration Guide

Server B2: Services “o=IBM,c=US”
host name "ibm.com"

Configuration File

referral ldap://US.white.pages.com:1234

listen ldap://:390

Directory

Database

suffix "o=IBM,c=US"

masterServer ldap://ibm.com:389

masterServerDN cn=Master

masterServerPW secret

ldbm GLDBLD31

dn: o=IBM,c=US

objectClass: organization

dn: ou=Austin,o=IBM,c=US

objectClass: referral

objectClass: extensibleObject

ref: ldap://austin.com:389/ou=Austin,o=IBM,c=US

dn: ou=Endicott,o=IBM,c=US

objectClass: referral

objectClass: extensibleObject

ref: ldap://endicott.com:789/ou=Endicott,o=IBM,c=US

dn: ou=HQ,o=IBM,c=US
objectClass: organizationalUnit

Figure 43. Referral example summary (server B2)

Chapter 12. Referrals 165

Server C: Services “ou=Austin,o=IBM,c=US”
host name "austin.com"

Configuration File

referral ldap://ibm.com:389
referral ldap://ibm.com:390
listen ldap://:389

database
suffix "ou=Austin,o=IBM,c=US"

ldbm GLDBLD31

Directory

Directory

dn: ou=LDAP development,ou=Austin,o=IBM,c=US
objectClass: organizationalUnit

Server D: Services “ou=Endicott,o=IBM,c=US”
host name "endicott.com"

Configuration File

referral ldap://ibm.com:389
referral ldap://ibm.com:390

dn: ou=Directory Team,ou=Endicott,o=IBM,c=US

objectClass: organizationalUnit

listen ldap://:789

database
suffix "ou=Endicott,o=IBM,c=US"

ldbm GLDBLD31

Figure 44. Referral example summary (servers C and D)

166 z/VM: TCP/IP LDAP Administration Guide

Chapter 13. Organizing the directory namespace

Directory services are meant to help organize the computing environment of the
enterprise. To do this, directory services are meant to be used to help find all the
resources at one’s disposal. Information that is typically found in a directory consists
of configuration information for services offered in the enterprise, locating
information for people, places, and things in the enterprise, as well as descriptive
information about services and resources available in the enterprise. The directory
service should be thought of as the spot that can be queried to find whatever is
desired in the enterprise.

When designing the format and organization of the directory service for an
enterprise, the intended usage scenarios should be considered. These usage
characteristics can have an impact on how the directory namespace should be
organized so as to offer reasonable performance.

There are two general areas of directory namespace design to be considered. First,
the types of information and the layout of where that information will be placed in
the directory namespace must be determined. Additional information types can be
added at a later date, but there should be some overall design of where in the
directory namespace these types of information should be placed. Second, based
on the usage characteristics of the users in the enterprise, the number of distinct
directory servers and the namespace subtree or subtrees that they support must be
considered.

As an example, consider an enterprise that consisted of two physical locations, one
in Los Angeles, CA and one in New York City, NY. People in New York City access
information about people, places, and things in Los Angeles often, while the people
in Los Angeles rarely access information items in New York City. To offer good
performance for both locations, a separate directory server could be installed and
run in each location. These LDAP servers would manage information about the
people, places, and things that reside in their respective locations. In addition,
because the New York City personnel access information about things in the Los
Angeles location, the information from the Los Angeles LDAP server could be
replicated to an additional LDAP server at the New York City LDAP server. This
would allow the New York City personnel to access information about the Los
Angeles location by contacting a local server. In Los Angeles, however, directory
requests about items in the New York City portion of the enterprise namespace are
redirected (that is, referred) to the New York City LDAP server for the information.
This would save managing a replicated set of information at the expense of slightly
longer access times on the less-requested information.

The next two sections discuss information layout in the namespace and partitioning
an enterprise namespace across multiple LDAP servers. These sections are
followed by a small example.

Information layout
A directory is meant to provide information about people, places, and things in the
enterprise. The most direct use of a directory is to hold information on how to
contact other people in the enterprise. This has commonly been known as the
internal phone book. With the widespread enhancements in technology, people are
now more accessible than ever. We have pagers, answering machines, cellular
phones, and e-mail. In trying to communicate with someone we might need to know
about all of this information. Modeling a person object class based on the attributes

© Copyright IBM Corp. 2007, 2009 167

about a person that are important to others in the enterprise is an easy way to
support an online internal phone book using an LDAP directory service. In addition
to people, different organizations within an enterprise can also be modeled by
creating new object classes and attribute types. This would allow storage in the
LDAP directory of locating information for useful services in the organization like
benefits, travel reservations, and human resources.

Another application of directory services is the ability to model or store information
about places. A place could be a conference room, which might have attributes of
numberOfSeats, projectorType, phoneNumber, calendarLocation,
dataPortType, officeNumber, and buildingNumber. Using this method, different
conference rooms within a company could be located and compared. Another
example of a place would be the whole site in which employees work. An object
class for a site LDAP directory entry might be made up of streetAddress,
generalManagerDN, siteMap, and cafeteriaLocation.

Things abound within the enterprise. Under this category falls computers, copiers,
FAX machines, printers, and computer software, as well as configuration information
for servers that use an LDAP directory service. Each of these can be modeled with
attribute types used inside object classes specific to the device or program.

In laying out where entries should appear in the directory hierarchy, by far the most
common method of naming things is to start with the country in which the company
is organized, followed by the name of the company, treated as an organization
attribute type. Thus, the top level suffix for LDAP directory service names for entries
within the company sometimes follows the form: o=CompanyName, c=US (for
US-based companies). Alternately, the top level suffix may follow the domain form,
for example: dc=CompanyName,dc=com. Below this suffix it is common for
organizational unit object classes to be used to represent departments or sites
within an organization. Below these organizational entries the actual entry
representing a person, place, or thing would be defined. When organizing the
information layout for the namespace, the intended usage should be considered to
ensure the best performance.

Example of building an enterprise directory namespace
Let us look at an example configuration that exhibits the features available with the
LDAP server. To set the stage, we will consider a moderately sized company that
has personnel working in three locations across the United States. Big Company,
Inc. has corporate headquarters in Chicago, IL, and two satellite facilities, one in
Los Angeles, CA and the other in New York City, NY. The information technology
staff would like to make available information about all of the company’s computing
and office services using an LDAP directory. In order to facilitate local modifications
as necessary of the information in the directory, as well as provide improved
response time for accessing local information, each site will have an LDAP server
running. The server running at each site will be responsible for managing the
directory information that pertains to that site.

The first thing to do is determine the name of the root of the directory namespace
for Big Company, Inc. Typically, the name for the company will consist of the
country of origin along with the company’s given name. In LDAP directory
terminology, the company is an organization. In this example, we chose:
o=Big Company, c=US

168 z/VM: TCP/IP LDAP Administration Guide

as the company’s name is Big Company and is located in the United States.
Choosing a name of this format helps ensure that when a global namespace
coordinator is established, the company’s chosen root will fit nicely into the overall
directory namespace.

Next to choose are the names of the three locations under which the directory
information is stored. At this point, the namespace could be organized in a number
of ways. One way would be to organize by functional unit (regardless of location).
This model is useful if individuals (or computers, or other equipment or services)
typically remain with the functional unit as opposed to being tied to the individual or
physical location. Another way would be to organize based on the physical locations
of the parts of the organization. This is useful if the people, places, and things to be
stored in the directory typically do not move between locations. This latter approach
will be used in the example. So, with three locations, three names are defined
below the overall company distinguished name:
ou=Los Angeles, o=Big Company, c=US
ou=Chicago, o=Big Company, c=US
ou=New York City, o=Big Company, c=US

Since separate LDAP servers will be established at each location, these names
represent the root of the subtree stored and managed by the directory server at
each location.

For administration, each site will have a different directory administrator. To define
this administrator, an administrator distinguished name and password need to be
defined for each location. To start, the following names will be used:
AdminDN "cn=Administrator, ou=Los Angeles, o=Big Company, c=US"

AdminDN "cn=Administrator, ou=Chicago, o=Big Company, c=US"

AdminDN "cn=Administrator, ou=New York City, o=Big Company, c=US"

Since the Chicago location is also the corporate headquarters, the LDAP directory
at this location will be used to store information about the entire company as well as
information about the Chicago site.

We now have enough information to set up the base configuration files for each of
the three LDAP servers that will be used to supply this information. Following are
the files needed to set up the LDAP servers on each site. Note that what is shown
is the minimal setup required. Other options could be specified in addition to these.
See “Creating the DS CONF File” in z/VM: TCP/IP Planning and Customization for
configuration file options.

Configuration file for the Chicago LDAP server
adminDN "cn=Administrator, ou=Chicago, o=Big Company, c=US"

database ldbm GLDBLD31
suffix "o=Big Company, c=US"
end of configuration file

Figure 45. Chicago base configuration

Chapter 13. Organizing the directory namespace 169

The referral line indicates the default place to refer connecting clients when the
LDAP server does not contain the information requested by the client. It is called
the default referral. It is in the form of an LDAP URL. After the scheme name
(ldap), the LDAP URL contains a TCP/IP DNS host name for another LDAP server.
In this example, it is assumed that the TCP/IP host on which the Chicago LDAP
server is running is ldap.chicago.bigcompany.com. The Chicago LDAP server does
not have a default referral defined. This keeps directory searches from inadvertently
going over the Internet from within the company.

The adminDN line indicates the distinguished name that should be used to connect
to the LDAP server in order to have complete control over the data content held by
the LDAP server.

The database line indicates that all following lines pertain to the LDBM storage
method. The suffix line indicates what part of the namespace is contained in this
server.

After these files have been created, one or more of the LDAP servers can be
started. However, there will be no initial data in the LDBM database. The next
section tells you how to load entries into the LDAP server.

Priming the directory servers with information
Add entries to an LDBM (file-based) backend in the LDAP server by using the
ldapadd and ldapmodify tools or by using the LDAP C language API and the
LDAP protocol. It is recommended that at least the top levels of directory
information be loaded first into the database. This provides a base from which to
add more entries into the directory namespace.

Using LDIF format to represent LDAP entries
The LDAP Data Interchange Format (LDIF) is used to represent LDAP entries in a
simple text format. An LDIF file contains groups of attribute information which will be
treated as an entry to be added to the directory. The general format of an LDIF
entry is:

Configuration file for the Los Angeles LDAP server
referral ldap://ldap.chicago.bigcompany.com
adminDN "cn=Administrator, ou=Los Angeles, o=Big Company, c=US"

database ldbm GLDBLD31
suffix "ou=Los Angeles, o=Big Company, c=US"
end of configuration file

Figure 46. Los Angeles base configuration

Configuration file for the New York City LDAP server
referral ldap://ldap.chicago.bigcompany.com

adminDN "cn=Administrator, ou=New York City, o=Big Company, c=US"

database ldbm GLDBLD31
suffix "ou=New York City, o=Big Company, c=US"
end of configuration file

Figure 47. New York City base configuration

170 z/VM: TCP/IP LDAP Administration Guide

dn: distinguished name
attrtype1: attrvalue1
attrtype2: attrvalue2
...

Each line in the LDIF file must begin in column 1. However, to continue a line, start
the next line with a single space or tab character. For example:
dn: ou=departments, ou=New York City, o=Big Co
mpany, c=US

Multiple attribute values are specified on separate lines. For example:
objectclass: organizationalunit
ou: departments

Note about editing LDIF files
Be aware that some editors place blank spaces at ends of all empty lines
within a file. A blank space at the beginning of a line signifies continuation of
the entry. The blank lines used to separate entries may be treated as
continuations of an attribute value instead of separators if an editor has
modified the LDIF file. Also, be aware that some editors delete blanks at the
end of a line that is not empty. This can change the value of an attribute,
especially if that value is continued on the next line.

If an attrvalue contains a nonprinting character, or begins with a space or a colon
(:), the attrtype is followed by a double colon (::) and the value is encoded in
base64 notation. For example, the value:
" begins with a space"

would be encoded like this:
cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

Multiple entries within the same LDIF file are separated by blank lines. Here is an
example of an LDIF file containing three entries.
dn: ou=New York City, o=Big Company, c=US
objectclass: organizationalunit
ou: New York City

dn: ou=fax machines, ou=New York City, o=Big Company, c=US
objectclass: organizationalunit
ou: fax machines

dn: ou=computers, ou=New York City, o=Big Company, c=US
objectclass: organizationalunit
ou: computers

Note: Trailing spaces are not trimmed from values in an LDIF file. Also, multiple
internal spaces are not compressed. If you do not want them in your data,
do not put them there.

Multiple attribute values for the same attribute type are specified on multiple lines
within the specification of a directory entry. For example:

Chapter 13. Organizing the directory namespace 171

dn: cn=John Doe, ou=New York City, o=Big Company, c=US
objectclass: person
cn: John Doe
phonenumber: 555-1111
phonenumber: 555-2222
sn: Doe

Generating the file
A file is typically generated using an existing source of information and some tools
to format the data into the LDIF format. Note that the order of entries in the LDIF
file is important. In order for an entry specified in the LDIF file to be successfully
added to the directory, its parent entry must first exist in the directory namespace.
For this reason, the top level entries in the directory namespace subtree that the
particular LDAP server will support must be first in the LDIF file.

For our example, we will define just a minimal set of entries to get the directory
server useful at each location. This will include two referral entries for the Chicago
location. The meaning of these entries will be discussed in more detail in the
following sections.

Here is the base set of LDIF files to set up the directory namespace at each
location. For the Los Angeles location:
dn: ou=Los Angeles, o=Big Company, c=US
objectclass: organizationalunit
ou: Los Angeles

dn: cn=Administrator, ou=LosAngeles, o=Big Company, c=US
objectclass: person
cn: Administrator
sn: Administrator
userpassword: xxxxx

dn: ou=fax machines, ou=Los Angeles, o=Big Company, c=US
objectclass: organizationalunit
ou: fax machines

dn: ou=computers, ou=Los Angeles, o=Big Company, c=US
objectclass: organizationalunit
ou: computers

dn: ou=departments, ou=Los Angeles, o=Big Company, c=US
objectclass: organizationalunit
ou: departments

For the New York City location:
dn: ou=New York City, o=Big Company, c=US
objectclass: organizationalunit
ou: New York City

dn: cn=Administrator, ou=New York City, o=Big Company, c=US
objectclass: person
cn: Administrator
sn: Administrator
userpassword: xxxxx

dn: ou=fax machines, ou=New York City, o=Big Company, c=US
objectclass: organizationalunit
ou: fax machines

dn: ou=computers, ou=New York City, o=Big Company, c=US
objectclass: organizationalunit
ou: computers

172 z/VM: TCP/IP LDAP Administration Guide

dn: ou=departments, ou=New York City, o=Big Company, c=US
objectclass: organizationalunit
ou: departments

For the Chicago location:
dn: o=Big Company, c=US
objectclass: organization
o: Big Company

dn: ou=Los Angeles, o=Big Company, c=US
objectclass: referral
objectclass: extensibleObject
ref: ldap://ldap.losangeles.bigcompany.com/ou=Los Angeles,o=Big Company,c=US

dn: ou=New York City, o=Big Company, c=US
objectclass: referral
objectclass: extensibleObject
ref: ldap://ldap.newyorkcity.bigcompany.com/ou=New York City,o=Big Company,c=US

dn: ou=Chicago, o=Big Company, c=US
objectclass: organizationalunit
ou: Chicago

dn: cn=Administrator, ou=Chicago, o=Big Company, c=US
objectclass: person
cn: Administrator
sn: Administrator
userpassword: xxxxx

dn: ou=fax machines, ou=Chicago, o=Big Company, c=US
objectclass: organizationalunit
ou: fax machines

dn: ou=computers, ou=Chicago, o=Big Company, c=US
objectclass: organizationalunit
ou: computers

dn: ou=departments, ou=Chicago, o=Big Company, c=US
objectclass: organizationalunit
ou: departments

These files will now be used with a load facility. After loading these files on each
respective directory server system, the directory namespace will be formed and the
servers can now be used to hold and supply information.

Two entries added to the Chicago location directory server database deserve some
special attention. These are the referral objects that were in the LDIF file for the
Chicago location. Notice that the referral objects have the identical distinguished
name as the root of the LDAP directory namespace that is served by the Los
Angeles and New York City servers. These entries, coupled with the default referral
specification in the configuration file for the directory servers in Los Angeles and
New York City, enable searches of the Big Company namespace to originate at any
of the three directory servers and resolve to the correct server to obtain the
information.

A referral redirects a client request to a different LDAP server that can presumably
handle the request (or refer the client to another server that can handle the
request). In our example, if a client connects to the New York City server requesting
a name that is under the Los Angeles portion of the namespace, the New York City
server will send back a referral to the client based on the default referral. This will
point the client at the Chicago directory server. The Chicago server will resolve the

Chapter 13. Organizing the directory namespace 173

request down to the referral object for distinguished name ou=Los Angeles, o=Big
Company, c=US and refer the client to the Los Angeles server. Finally, the client will
contact the Los Angeles server and obtain the information requested.

Setting up for replication
As people start using the directory service in their daily routines at Big Company,
Inc., the information technology staff notices that the people in New York City are
doing a lot of work with the people in Los Angeles. So much, in fact, that an
analysis of the TCP/IP traffic between New York City and Los Angeles shows that
much of the traffic is directory access requests, presumably to look up phone
numbers or FAX numbers for people in Los Angeles. The information technology
staff decides to improve directory lookup response time, as well as lessen the
directory lookup traffic between New York City and Los Angeles, by creating a
replica of the Los Angeles directory server’s information in New York City. This will
allow local access to this information by the New York City users and cut down on
the amount of requests from New York that must travel to Los Angeles to be
completed.

Defining another LDAP server
To set up a replica of the LDAP server information in Los Angeles, a second LDAP
server must be defined and started in New York City. This server can reside on the
same system as the first LDAP server, though if this is chosen, the TCP/IP port that
this replica server listens on must be different from the other LDAP server running
on the system. As an alternative, the replica server could run on a different system,
allowing it to listen on the default LDAP port. The configuration file for the replica
server in New York City will be very similar to the configuration files for the New
York City server and the Los Angeles server. This configuration file must contain
some additional items that pertain to replication. Here is what the contents of the
New York City Los Angeles replica server should contain:

The additional lines at the end of the configuration file specify the only “user” that
can update entries in the replica LDAP server. The values here must match the
values entered at the “source” location when the replica is defined.

Preparing the replica
The next step is to get the LDAP replica primed with the existing information in the
Los Angeles server and set up the Los Angeles server to replicate to the New York
City replica. The set of steps to perform (described in Populating a replica) ensures
that the replicas are in sync and that no update is lost during this synchronization.
Once the replica is defined at the source location, updates to the directory
information will be logged to be sent to the replica server when possible.

Configuration file for the New York City Los Angeles replica LDAP server
referral ldap://ldap.chicago.bigcompany.com

listen ldap://:2001
adminDN "cn=Administrator, ou=Los Angeles, o=Big Company, c=US"

database ldbm GLDBLD31
suffix "ou=Los Angeles, o=Big Company, c=US"

masterServer ldap://ldap.losangeles.bigcompany.com
masterServerDN "cn=Replicator, ou=Los Angeles, o=Big Company, c=US"
end of configuration file

174 z/VM: TCP/IP LDAP Administration Guide

To initially synchronize the data between the LDAP master server and the LDAP
replica server, perform the steps in Populating a replica.

While there are a number of manual steps to perform, there is a small consolation
that the steps at different locations are not interleaved. All work can be done at the
source location and then all work can be performed at the target (replica) location.

Resynching the replica and master servers
If it is noticed that a replica’s contents are out of sync with the information at the
master server, the information can be resynched by following the steps shown in
Recovering from out-of-sync conditions.

Notifying users of the replica
At this point, the New York City users can be notified that a second LDAP server is
now available for their use. The notification should contain either the LDAP URL of
the new LDAP replica server or the host name and port number of the LDAP replica
server, as well as the base of the LDAP subtree that is published by the replica. As
updates are made to the Los Angeles LDAP server, these updates will be
propagated to the replica server in New York City. See Chapter 9, “Replication” for
more details on replication.

What Big Company, Inc. now has in place is an Enterprise Directory service that
can be used by whatever enterprise distributed processing tasks require lookup or
configuration information. These enterprise distributed processing tasks and
applications may require some changes to make use of the directory service, but
the result will be the ability to view, find, and modify the configuration of the
enterprise by looking at and modifying the contents of the LDAP directory.

Chapter 13. Organizing the directory namespace 175

176 z/VM: TCP/IP LDAP Administration Guide

Chapter 14. Client considerations

When an LDAP application is communicating with an LDAP server, you should
consider the following special topics:
v Root DSE
v Monitor Support
v CRAM-MD5 authentication support
v UTF-8 data over the LDAP Version 2 protocol
v Attribute types stored and retrieved in lowercase
v Abandon behavior
v Changed return codes
v Reason codes

Root DSE
The root DSE is the entry at the top of the LDAP server directory information tree.
All the namingcontexts (suffixes) in the LDAP server are directly below the root
DSE. The root DSE contains information about the LDAP server, including the
namingcontexts that are configured and the capabilities of the server.

The root DSE can be searched by specifying a zero-length base distinguished
name. The search scope can be either base or subtree (the one-level scope is not
supported).

Root DSE search with base scope
A root DSE search with base scope returns the contents of the root DSE. The root
DSE attributes describe the LDAP server. The only search filter supported is
objectclass=*. There is no access control checking for the root DSE, but an
anonymous bind will fail if allowAnonymousBinds off is specified in the LDAP
server configuration file. The supportedcontrol, supportedextension, and
namingcontexts attributes may contain values that are contributed by plug-in
extensions configured in the LDAP server.

The following example uses the ldapsearch utility to request a base search of the
root DSE and shows sample output for the search:
ldapsearch -h ldaphost -p ldapport -s base -b "" "objectclass=*"

Following is an example of the information that the LDAP server will report on a
search of the root DSE. A subset of these values may appear in your root DSE
based on the server configuration choices you have made.
supportedcontrol=2.16.840.1.113730.3.4.2
supportedcontrol=1.3.18.0.2.10.2
supportedcontrol=1.3.18.0.2.10.10
supportedcontrol=1.3.18.0.2.10.11
supportedcontrol=1.3.18.0.2.10.20
supportedcontrol=2.16.840.1.113730.3.4.3
supportedcontrol=1.3.18.0.2.10.19
supportedcontrol=1.3.18.0.2.10.6
supportedextension=1.3.6.1.4.1.1466.20037
supportedextension=1.3.18.0.2.12.8
supportedextension=1.3.18.0.2.12.7
supportedextension=1.3.18.0.2.12.48
supportedextension=1.3.18.0.2.12.62
namingcontexts=cn=myRACF
namingcontexts=CN=CHANGELOG
namingcontexts=o=IBM,c=US

© Copyright IBM Corp. 2007, 2009 177

namingcontexts=secAuthority=Default
ibm-supportedcapabilities=1.3.18.0.2.32.19
ibm-supportedcapabilities=1.3.18.0.2.32.3
ibm-supportedcapabilities=1.3.18.0.2.32.31
ibm-supportedcapabilities=1.3.18.0.2.32.7
ibm-supportedcapabilities=1.3.18.0.2.32.33
ibm-supportedcapabilities=1.3.18.0.2.32.34
ibm-supportedcapabilities=1.3.18.0.2.32.30
ibm-supportedcapabilities=1.3.18.0.2.32.28
ibm-supportedcapabilities=1.3.18.0.2.32.24
ibm-supportedcapabilities=1.3.18.0.2.32.26
ibm-enabledcapabilities=1.3.18.0.2.32.3
ibm-enabledcapabilities=1.3.18.0.2.32.7
ibm-enabledcapabilities=1.3.18.0.2.32.33
ibm-enabledcapabilities=1.3.18.0.2.32.34
ibm-enabledcapabilities=1.3.18.0.2.32.31
ibm-enabledcapabilities=1.3.18.0.2.32.28
ibm-enabledcapabilities=1.3.18.0.2.32.24
ibm-enabledcapabilities=1.3.18.0.2.32.26
subschemasubentry=cn=schema
supportedsaslmechanisms=EXTERNAL
supportedsaslmechanisms=CRAM-MD5
supportedsaslmechanisms=DIGEST-MD5
supportedldapversion=2
supportedldapversion=3
vendorname=International Business Machines (IBM)
vendorversion=z/VM V6R1
ibmdirectoryversion=z/VM V6R1
ibm-sasldigestrealmname=MYHOST.IBM.COM
altserver=ldap://host2.ibm.com:999
ref=ldap://hostk.ibm.com:391
changelog=cn=changelog
firstchangenumber=24213
lastchangenumber=24322

Following are Object Identifiers (OIDs) for supported and enabled capabilities:

Short name Description OID assigned

Entry UUID Identifies that this server supports the
ibm-entryuuid operational attribute.

1.3.18.0.2.32.3

System Restricted ACL
Support

Indicates that the server supports
specification and evaluation of ACLs on
system and restricted attributes.

1.3.18.0.2.32.7

Max Age ChangeLog Entries Specifies that the server is capable of
retaining changelog entries based on
age.

1.3.18.0.2.32.19

Monitor Operation Counts The server provides new monitor
operation counts for initiated and
completed operation types.

1.3.18.0.2.32.24

Null-based subtree search Indicates that the server supports
null-based subtree search operations,
which search all the LDBM entries in the
server.

1.3.18.0.2.32.26

TLS Capabilities Specifies that the server is capable of
performing Transport Layer Security
(TLS).

1.3.18.0.2.32.28

178 z/VM: TCP/IP LDAP Administration Guide

Short name Description OID assigned

ibm-allMembers and
ibm-allGroups operational
attributes

Indicates that a backend supports
searching on the ibm-allGroups and
ibm-allMembers operational attributes.
The members of a static, dynamic or
nested group can be obtained by
performing a search on the
ibm-allMembers operational attribute.
The static, dynamic and nested groups
that a member DN belongs to can be
obtained by performing a search on the
ibm-allGroups operational attribute.

1.3.18.0.2.32.31

Modify DN (subtree move) Indicates that a subtree can be moved to
another subtree, within a backend. This
move uses a new superior. It can also
use a new RDN.

1.3.18.0.2.32.33

Modify DN (subtree rename) Indicates that a subtree can be renamed.
The DN of each entry under the subtree
will also be changed. This rename uses
a new RDN but not a new superior.

1.3.18.0.2.32.34

Root DSE search with subtree scope (Null-based subtree search)
A root DSE search with subtree scope returns all the entries that match the search
filter in the LDBM backends configured in the LDAP server. This search is
commonly referred to as a null-based subtree search. Note that the search does not
include the root DSE itself, the LDAP server schema entry, SDBM entries, and
GDBM entries (change log records). Alias entries are not dereferenced during the
search, they are processed like normal entries and returned if they match the
search filter. Referral entries in LDBM return referrals to the client. Any filter can be
specified for the subtree search.

A root DSE subtree is implemented as a series of searches to each LDBM suffix.
These individual searches are each limited by the timelimit and sizelimit options
specified in the LDAP server configuration file. If a time limit or size limit is specified
on the root DSE search request, then the individual searches are also limited by the
amount of time remaining and the number of entries left to return when that
individual search is started. See the descriptions of the sizelimit and timelimit
options in “Step 7. Create and Customize the LDAP Configuration File (DS CONF)”
in z/VM: TCP/IP Planning and Customization for more information. Each individual
LDBM search is subject to the normal LDBM access control checking.

The following example uses the ldapsearch utility to request a subtree search of
the root DSE for entries that have a cn value that begins with ken and shows
sample output for the search.
ldapsearch -h ldaphost -p ldapport -D binddn -w bindpw -s sub -b "" "cn=ken*"

cn=ken,o=ldbm
objectclass=person
objectclass=top
cn=ken
sn=smith

Chapter 14. Client considerations 179

Monitor support
You can retrieve statistics from the server by issuing a search request with a search
base of cn=monitor and a filter of (objectclass=*). For details, see Monitoring
performance with cn=monitor.

CRAM-MD5 authentication support
CRAM-MD5 authentication is supported on the IBM Tivoli® Directory Server client
utilities on other platforms, such as AIX®, Windows®, and Linux®. However, the
manner in which it has been implemented on the IBM Tivoli Directory Server on
other platforms varies from the support that is available on the z/VM LDAP server.

In order to perform a CRAM-MD5 authentication bind with the IBM Tivoli Directory
Server client utilities on other platforms to the z/VM LDAP server, you must specify
the bindDN with the -D option. The IBM Tivoli Directory Server client utilities on
other platforms do not support the specification of the username on a CRAM-MD5
bind.

UTF-8 data over the LDAP Version 2 protocol
The LDAP Version 3 Protocol allows UTF-8 attribute values outside of the IA5
character set to be stored in the directory. This information must be able to be
returned in some format to LDAP Version 2 clients. An additional LDAP server
configuration file option, sendV3stringsoverV2as, which has the possible values
ISO8859-1 or UTF-8, can be used to indicate which format to use when sending
this information over the Version 2 protocol.

Note: Different clients treat non-IA5 data differently over the Version 2 protocol.
Refer to the documentation for the client APIs you are using for more
information.

Attribute types stored and returned in lowercase
The LDAP server stores and returns attribute types in lowercase (normalized). For
example, the attribute type “productName” is returned as “productname”.

Abandon behavior
The LDAP server reads additional operations as they arrive as long as the
connection is not a secure connection and the previous operation is not bind,
unbind, or extended operation. This allows the LDAP server to process abandon
operations as they are received and affect previously submitted operations.

Reason codes
The LDAPResult construct is used by the LDAP protocol to return success or
failure indications from servers to clients. This construct contains an error message
field. Servers can optionally provide “human-readable” diagnostic information in this
field. Depending on the location in the LDAP server where errors are detected, error
messages generated may have the following format:
R<numeric digits> <diagnostic information> <traceback information>

where:

180 z/VM: TCP/IP LDAP Administration Guide

numeric digits
Represents a specific reason code.

diagnostic information
Provides details about the reason for the failure.

traceback information
Is of the form (file_identification) and will assist you in diagnosing
application or configuration problems.

Note the following regarding this error information:

v It is intended to be “human-readable” to assist in identifying problems detected
by the server.

v It is not translated (English text only).

v It is not intended to be used as an application programming interface (API).

v Data returned may be changed by service or new releases of the product.
(Again, it is not intended to be an API.)

v The reason code returned for a particular error can change and the reason code
text can change.

Following is the current list of reason codes and associated diagnostic information
returned by the LDAP server.

R000001 Unable to allocate storage

R000004 Internal server error encountered

R000005 Unable to translate value for attribute
’name’ from source_codepage to
target_codepage

R000100 The password has expired

R000101 The new password is not valid

R000102 The user id has been revoked

R000104 The password is not correct or the
user id is not completely defined
(missing password or uid)

R000105 A bind argument is not valid

R000114 The realm portion of the value of
attribute ’name’ is not the RACF default
realm

R000115 There is no RACF default realm

R000116 Cannot specify a value when deleting
attribute ’name’

R000117 Cannot delete attribute ’name’

R000118 Cannot replace attribute ’name’

R000119 Cannot add or replace attribute ’name’

R000120 Cannot specify multiple values for
attribute ’name’

R000121 Value for attribute ’name’ must be
same as value for DN

R000122 The value for attribute ’name’ must be
the DN of a user

R000123 The value for attribute ’name’ must be
the DN of a group

R000124 The value for attribute ’name’ must be
the DN of a user or a group

R000125 Attribute ’name’ is not supported

R000126 Filter ’filter’ is not supported for this
base

R000127 Filter ’filter’ contains a type without a
value

Chapter 14. Client considerations 181

R000128 Filter is not supported

R000129 Value ’value’ is not supported for filter
’filter’

R000131 ’name’ is not a valid RACF DN

R000132 Value for attribute ’name’ cannot be
more than size characters

R000133 Value for attribute ’name’ must be an
integer less than size

R000134 The RACF type command created to
satisfy this request is too long,
probably due to specifying a long filter
or attribute value or too many attribute
values

R000135 Cannot perform this request on a
reserved SDBM DN, ’name’

R000137 ’name’ is not a valid RACF DN for bind,
check that the syntax is correct for a
RACF user DN

R000139 RACF ’type’ command failed

R000140 Cannot parse RACF ’command’ output

R000141 Routine ’name’ failed, rc=return_code

R000142 Cannot obtain the password of a RACF
user

R000143 Bound user does not have the
authority to perform this operation

R000144 Cannot specify a binary attribute in a
compare operation

R000145 Must specify a value when deleting
attribute ’name’

R000200 Change log not active

R000201 Cannot decode attribute from request,
rc=return_code

R000202 Request did not come over PC
interface

R000203 Value for attribute out of range

R000204 Required value for attribute is missing

R000205 Unable to convert userID (value) and
Group (value) to DN, rc=return_code

R000206 PC caller must be in supervisor state

R001001 Generalized Time value ’value’ is not
valid

R001005 Duplicate value encountered: 'value'

R001008 Value specified for attribute ’name’
does not match attribute syntax

R001011 COLLECTIVE keyword is not supported
for attribute type ’name’

R001012 Attribute type ’name’ is not defined

R001015 Cycle detected in superior hierarchy
for ’identifier’

R001017 Syntax/matching rule inconsistency for
attribute type ’name’

R001018 Attribute type ’name’ is obsolete

R001024 Abstract class ’name’ may not be a
base object class

R001025 Multiple base structural object classes
specified for ’name’

R001026 No structural object class specified for
’name’

R001027 Base structural object class ’name’
may not be changed

R001029 Entry does not contain MUST attribute
’name’

182 z/VM: TCP/IP LDAP Administration Guide

R001030 Entry contains attribute ’name’ which
is not allowed for object class

R001031 Missing left parenthesis in definition:
definition

R001032 Missing right parenthesis in definition:
definition

R001038 Numeric object identifier ’value’ is not
valid

R001046 Missing closing quote for value ’value’

R001047 Missing opening quote for value ’value’

R001048 Missing closing brace for value ’value’

R001052 Non-numeric character found in integer
value ’value’

R001053 Integer value of length size exceeds
maximum length of size

R001055 Attribute type ’name’ is not valid for
the directory schema

R001056 Object class ’name’ is not valid for the
directory schema

R001060 Object class ’name’ is obsolete

R001067 keyword keyword missing in schema
definition: definition

R001069 Reference attribute type not found for
IBM attribute type ’name’

R001072 More than one object class type
keyword found in schema definition:
definition

R001075 Object identifier missing in schema
definition: definition

R001076 keyword keyword specified multiple
times in schema definition: definition

R001077 keyword keyword not supported in
schema definition: definition

R001078 Value missing for keyword keyword in
schema definition: definition

R001079 Unsupported value for keyword
keyword in schema definition: definition

R001080 Attribute type ’identifier’ is already
defined

R001081 Object class ’identifier’ is already
defined

R001082 Inappropriate type matching rule in
schema definition: definition

R001083 Object class ’identifier’ is not defined

R001084 IBM attribute type ’identifier’ is not
defined

R001085 IBM attribute type ’identifier’ is already
defined

R001086 No syntax value specified for attribute
type ’identifier’

R001087 Attribute type ’identifier’ is in use and
cannot be replaced or deleted

R001088 Object class ’identifier’ is in use and
cannot be replaced or deleted

R001089 Attribute type name ’name’ is already
assigned

R001090 Object class name ’name’ is already
assigned

R001091 TOP object class not found in superior
hierarchy for ’identifier’

R001092 Unable to save directory schema

R001093 Schema lookup failed while resolving
references for ’identifier’

Chapter 14. Client considerations 183

R001094 Attribute type ’identifier’ is referenced
by ’identifier’ and cannot be deleted

R001095 Object class ’identifier’ is referenced by
’identifier’ and cannot be deleted

R001096 OID change not allowed because the
new definition is not the same as the
current definition

R001097 Attribute type ’identifier’ conflicts with
existing type, cannot be replaced for
migration

R001098 Object class ’identifier’ conflicts with
existing class, cannot be replaced for
migration

R001099 Duplicate values specified for attribute
’name’

R002001 Missing equal sign in DN component
’component’

R002004 Incomplete escape sequence in DN
component ’component’

R002006 Empty DN component is not supported

R002007 Incorrect syntax in aclEntry attribute
value ’value’

R002008 Permissions missing in aclEntry
attribute value ’value’

R002018 An extraneous colon was found in
aclEntry attribute value ’value’

R002019 An unsupported extensible filter was
specified

R002020 A decoding error has been
encountered while base64-decoding
attribute ’name’

R002021 An incorrectly formatted ’name’
attribute value has been encountered

R003029 The aclPropagate attribute requires the
aclEntry attribute

R003030 The ’name’ attribute cannot be used in
the entry distinguished name

R003032 The ownerPropagate attribute requires
the entryOwner attribute

R003057 Access denied because user does not
have ’add’ permission for the parent
entry

R003062 Access denied because user does not
have ’write’ permission for all
attributes in the new entry

R003070 Access denied because user does not
have ’write’ permission for all modified
attributes

R003076 Access denied because user does not
have ’delete’ permission for the entry

R003082 Access denied because user does not
have ’write’ permission for all
attributes in the old name

R003095 Access denied because user does not
have ’compare’ permission for the
attribute

R003119 Access denied because user does not
have ’write’ permission for all
attributes in the new name

R003125 Access denied because user does not
have ’add’ permission for the new
superior entry

R003128 Unable to realign DN attributes
because user does not have ’write’
permission for attributes in ’name’

R003129 Realigning DN attributes would result
in duplicate values for attribute ’name’
in ’name’

R004017 No attributes specified for entry ’name’

184 z/VM: TCP/IP LDAP Administration Guide

R004019 Entry data is missing required RDN
components

R004020 RDN contains duplicate values for
attribute ’name’

R004022 Parent not found for entry ’name’

R004026 Entry ’name’ not found in database

R004028 Search size limit exceeded

R004031 Search time limit exceeded

R004035 Attribute type ’name’ may not be added
or modified by users

R004038 Operation not allowed because
backend is in read-only mode

R004041 Entry ’name’ is not a leaf and may not
be deleted

R004051 Entry ’name’ does not contain attribute
’name’

R004054 Invalid UTF-8 character found in string
value ’value’

R004060 Entry does not contain a password

R004062 Credentials are not valid

R004071 DN ’name’ does not exist

R004073 Entry is not a leaf and cannot be
modified to be a referral entry

R004077 DN ’name’ already exists

R004083 New superior is not allowed for an
LDAP V2 request

R004086 Entry ’name’ already contains attribute
’name’ with value ’value’

R004091 Non-IA5 data received for an LDAP V2
request

R004096 Entry ’name’ does not contain attribute
’name’ with value ’value’

R004098 Filtering on non-textual attribute ’name’
is not allowed

R004099 Parent of new entry ’name’ is a referral
entry

R004107 The __passwd function failed; not
loaded from a program controlled
library

R004108 Native user ID name is either not
defined or no UID is present in the
OMVS segment

R004109 The password has expired

R004110 The user id has been revoked

R004111 The password is not correct

R004112 A bind argument is not valid

R004113 Native authentication cannot be
performed when multiple uid values
exist

R004114 The modify-delete of the old password
must occur before the modify-add of
the new password

R004115 More than one password cannot be
specified for a native authentication
password update

R004116 Password change not allowed because
native updates are not enabled

R004117 Native authentication replace is not
allowed

R004118 Native user ID ’name’ is either not
defined or no UID is present in the
OMVS segment

Chapter 14. Client considerations 185

R004119 A modify-add of the new password
must follow the modify-delete of the
old password

R004120 The userPassword attribute cannot be
added because the entry uses native
authentication

R004121 Entry is using native authentication but
without a native userid

R004128 Native authentication password change
failed: The new password is not valid,
or does not meet requirements

R004129 New superior ’name’ does not exist

R004130 Time limit exceeded for Modify DN
operation

R004132 The new superior DN must exist in the
same backend

R004133 The new superior DN is located in the
subtree to be moved

R004141 New RDN ’name’ is not valid

R004145 The new superior may not be a referral
or alias object

R004153 Parent of new entry ’name’ is an alias
entry

R004154 Entry is not a leaf and cannot be
modified to be an alias entry

R004155 Alias entry ’name’ points to itself

R004158 Cycle detected while dereferencing
alias ’name’

R004159 Dereferencing ’name’ failed because
the resulting DN does not exist in this
backend

R004160 Entry ’name’ cannot be both an alias
and a referral

R004161 Persistent search terminated because
search base entry has been deleted

R004163 Dynamic group URL ’url’ is not valid

R004164 An unsupported value ’value’ is
specified for attribute ’ref’

R004166 The LDAP server is shutting down

R004176 The __passwd() function failed with
error error_code

R005001 Requested operation is not supported
by the GDBM backend

R005002 Only the base change log entry can be
modified

R005003 The base change log entry cannot be
deleted

R005004 Only the aclEntry and entryOwner
attributes can be modified

R006001 LDAP Client API api_name has returned
an error code=return_code with an error
message=’error_string’

R006003 A decoding error has been
encountered while decoding
attibute(s): attr_type, rc=return_code

R006004 An encoding error return_code has
been encountered while encoding
response

R006006 Unsupported or inappropriate critical
control ’identifier’

R006009 The extended operation request with
OID=oid requires the critical control
with OID=oid

R006010 Unsupported extended operation
’identifier’

R006011 The extended operation request with
OID=oid does not support the critical
control with OID=oid

186 z/VM: TCP/IP LDAP Administration Guide

R006023 Required field (name) missing

R006024 Connection to server (url) failed

R006025 Incorrect ldapURL specified (url)

R006026 ldap_search failed rc=return_code

R006027 Unsupported authorization type=type

R006028 Expected attribute name missing from
entry

R006029 Empty sequence in extended operation
request name

R006050 Extended operation request does not
have an object identifier

R006051 The type backend is not defined

R006052 Persistent search is allowed only when
bound as the LDAP administrator

R006053 Persistent search must specify
LDAP_DEREF_NEVER or
LDAP_DEREF_FINDING

R006054 Persistent search is not allowed using
the Program Call interface

R006055 Persistent search is not allowed with
paged or sorted results

R006056 Persistent search is not supported by
the backend

R006060 Unload extended operation is allowed
only when bound as the LDAP
administrator

R006061 Unload extended operation found
multiple LDBM or TDBM backends to
unload

R006062 Unload extended operation cannot find
subtree DN ’name’ to unload

R006063 Unload extended operation cannot find
backend name ’name’ to unload

R006064 Unload extended operation unable to
open file ’file_name’, errno=error_code,
errstring=error_string

R006065 Unload extended operation has both
backend name and subtree DN
specified

R006066 Unload extended operation cannot find
any LDBM or TDBM backend in the
LDAP server configuration file to
unload

R007001 SASL authentication requires the LDAP
Version 3 protocol

R007002 Unsupported SASL authentication
method ’name’

R007005 Server is not configured for client
authentication

R007006 Client certificate is not available

R007020 User password is not available with
native authentication

R007027 TLS is not supported on the
connection

R007028 SSL/TLS is already active on the
connection

R007029 Other operations are outstanding for
the connection

R007030 Multiple ’name’ attributes found in
DIGEST-MD5 response

R007031 Required ’name’ attribute not found in
DIGEST-MD5 response

R007032 Syntax error in DIGEST-MD5 response

R007033 Authorization DN in DIGEST-MD5
response does not match DN
associated with user name

Chapter 14. Client considerations 187

R007034 BIND DN ’name’ is not the same as
authentication DN ’name’

R007035 The value of DIGEST-MD5 response
attribute ’name’ is not valid

R007036 The DIGEST-MD5 authorization
identifier is not a distinguished name

R007037 DIGEST-MD5 response attribute ’name’
is not the same as the challenge value

R007038 Maximum DIGEST-MD5 buffer size
must be at least 256 bytes

R007047 SASL EXTERNAL bind using the
system identity requires the SDBM
backend

R007051 DIGEST-MD5 response URL ’url’ is
incorrect or cannot be verified

R007052 LDAP server in maintenance mode;
operations restricted to adminDN,
masterServerDN and peerServerDN

R007060 SASL bind is in progress

R007061 No SASL mechanism specified

R007062 The EXTERNAL SASL mechanism is
not available for the connection

R007063 Client credentials may not be specified
for the EXTERNAL SASL mechanism

R007064 Concurrent BIND requests are not
supported

R007065 No SASL BIND credentials

R007066 Unable to accept GSSAPI security
context: Major 0xstatus, Minor 0xstatus
- error_string

R007067 Unexpected security token received for
GSSAPI continuation

R007068 Unable to wrap GSSAPI response:
Major 0xstatus, Minor 0xstatus -
error_string

R007069 A GSSAPI authorization identity may
not be specified

R007070 Unable to unwrap GSSAPI response:
Major 0xstatus, Minor 0xstatus -
error_string

R007071 Requested GSSAPI security layer
number is not supported

R007072 Maximum GSSAPI receive length size
is too small

R007073 Unable to get GSSAPI wrap size limit:
Major 0xstatus, Minor 0xstatus -
error_string

R007074 Unable to obtain GSSAPI source name:
Major 0xstatus, Minor 0xstatus -
error_string

R007075 Unexpected SASL BIND credentials

R007076 No digest realm name is available

R007077 No user name specified for SASL BIND
request

R007078 HMAC digest in SASL BIND request is
not valid

R007079 The local Program Call interface
supports just the EXTERNAL SASL
mechanism

R007080 A bind DN has been specified without
a password

R007081 Anonymous binds are not allowed and
no bind distinguished name exists

R007082 An internal SSL error has been
encountered

188 z/VM: TCP/IP LDAP Administration Guide

R007083 Authentication with a reserved bind DN
is not allowed

R008001 LDBM backend database is disabled

R008002 Entry ’name’ contains multiple
password values

R008003 Multiple entries contain uid ’name’

R008004 Clear password is not available

R008005 Nested group recursion detected for
group ’name’

R008006 Dynamic group search filter ’filter’ is
not valid

R008008 No base entry specified in dynamic
group URL ’url’

R008009 An internal LDBM backend error has
occurred

R008010 Subtree move is not supported by the
replica servers

R008011 Subtree rename is not supported by
the replica servers

R008012 New superior is not supported by the
replica servers

R008013 DN attribute realignment is not
supported by the replica servers

R008014 Value value for attribute name is not
valid

R008015 Value value for attribute name is out of
range

R008016 SSL support is not configured

R008102 Entry ’name’ contains multiple
password values

R008103 Multiple entries contain uid ’name’

R008104 Clear password is not available

R008105 Nested group recursion detected for
group ’name’

R008106 Dynamic group search filter ’value’ is
not valid

R008108 No base entry specified in dynamic
group URL ’url’

R008117 Attribute object identifier ’identifier’ is
longer than 200 characters

R008118 Object class name ’name’ is longer
than 200 characters

R008119 DN ’name’ exceeds the maximum
length of size

R008120 Subtree move is not supported by the
replica servers

R008121 Subtree rename is not supported by
the replica servers

R008122 New superior is not supported by the
replica servers

R008123 DN attribute realignment is not
supported by the replica servers

R008124 Changelog root must have an explicit
and propagating ACL

R010001 Invalid character in descriptor
’descriptor’

R010002 Missing attribute type in DN
component ’component’

R010003 Missing attribute value in DN
component ’component’

R010004 No equality matching rule for DN
attribute ’attribute’

Chapter 14. Client considerations 189

R010005 No matching rule defined for string
value ’value’

R010006 UTC Time value ’value’ is not valid

R010007 Invalid IA5 character found in string
value ’value’

R010008 Bit string value ’value’ is not valid

R010009 Boolean value ’value’ is not valid

R010010 Octet string value ’value’ is not valid

R010011 Telephone number value ’value’ is not
valid

R010012 UUID value ’value’ is not valid

R010013 Undefined LDAP syntax syntax

R010014 Country string value ’value’ is not valid

R010015 No backend for DN ’name’

R010016 Backend initialization failed for DN
’name’

R010017 operation is not supported by the type
backend

R010018 Search with null base DN requires
either scope=base (for root DSE
search) or scope=subtree (for null
based subtree search)

R010019 Search with null base DN requires filter
(objectclass=*)

R010020 Schema search requires scope=base

R010021 Schema search requires an object
class presence or equality filter

R010022 Binary option is not supported by the
type backend

R010023 LDAP protocol version 3 is required for
server controls

R010024 Unable to decode value for control
’identifier’

R010025 No value provided for control ’identifier’

R010026 Attribute type ’identifier’ already
specified for a sort key

R010027 Control ’identifier’ is specified multiple
times

R010028 Critical control ’identifier’ cannot be
processed

R010029 Maximum of size result sets has been
reached

R010030 Unable to compute search message
digest

R010031 Page size of zero is not valid for initial
request

R010032 Paged search results not found

R010033 Continuation search request not same
as initial request

R010034 Unknown LDAP message type type

R010035 Binary attribute type ’name’ not
allowed in DN

R010036 No value provided for attribute ’name’

R010037 Binary transfer is not supported for
non-binary attribute type ’name’

R010038 Embedded string delimiter found in
value for attribute ’name’

R010039 Incorrect ASN.1 encoding in DN
component ’component’

190 z/VM: TCP/IP LDAP Administration Guide

R010040 Unsupported ASN.1 type in DN
component ’component’

R010041 Server control does not have an object
identifier

R010042 Definition has no components:
definition

R010043 Substring filter for attribute ’name’ has
no value

R010044 Substring filter type type is used
incorrectly

R010045 type filter has an empty filter set

R010046 No equality matching rule for attribute
type ’name’

R010047 The new entry DN must exist in the
same backend

R010048 The specified permissions are not
allowed for the access class in
aclEntry attribute value ’value’

R010049 routine failed with return code
return_code, reason code reason_code

R010050 Label ’name’ is not defined

R010051 ICSF services are not available

R010052 Incorrect key length for label ’name’

R010053 Incorrect key parity for label ’name’

R010054 Encryption type type is not supported

R010055 Encryption tag ’value’ is not supported

R010056 Encrypted data length is not a multiple
of number

R010057 Incorrect key value for label ’name’

R010058 Old and new password values were not
supplied

R010060 LDAP protocol version 3 is required for
extended operations

R010061 Only GetDnForUserid and
GetPrivileges extended operations are
supported

R010062 Unable to communicate with
cross-system group owner

R010063 cn=monitor search requires
scope=base

R010064 cn=monitor search requires filter
(objectclass=*)

R010065 Unable to write attribute type ’name’

R010066 Unable to write to file ’file_name’:
error_code/reason_code - ’error_string’

Chapter 14. Client considerations 191

192 z/VM: TCP/IP LDAP Administration Guide

Chapter 15. SSL Certificate/Key Management and SSL Tracing
Information

SSL connections make use of public/private key mechanisms for authenticating
each side of the SSL session and agreeing on bulk encryption keys to be used for
the SSL session. To use public/private key mechanisms (termed PKI), public/private
key pairs must be generated. In addition, X.509 certificates (which contain public
keys) may need to be created, or certificates must be requested, received, and
managed.

SSL uses the gskkyman utility to manage PKI private keys and certificates. Invoke
the gskkyman utility with the CMS GSKKYMAN command. gskkyman creates, fills
in, and manages a file that contains PKI private keys, certificate requests, and
certificates. This file is called a key database and, by convention, has a file
extension of .kdb.

SSL uses the GSK_KEYRING_FILE environment variable to specify the locations of
the PKI private keys and certificates. The key database file name is passed in this
environment variable.

Key Database Files
Key database files are password protected because they contain the private keys
that are associated with some of the certificates that are contained in the key
database. Private keys, as their name implies, should be protected because their
value is used in verifying the authenticity of requests made during PKI operations.

It is recommended that key database files be set with the following string of file
permissions:
rw- --- --- (600) (read-write for only the owner of the key database)

The owner of the key database should be the user who manages the key database.
The user ID that runs the LDAP server must have at least read permission to the
key database file at runtime. If the LDAP server user ID is a server program that
runs under a different user ID than the administrator of the key database file, it is
recommended that a group be setup to control access to the key database file. In
this case, it is recommended that you set the permissions on the key database file
to the following:
rw- r-- --- (640) (read-write for owner and read-only for group)

The owner of the key database file is set to the administrator user ID and the group
owner of the key database file is set to the group that contains the server that will
be using the key database file.

For more information about gskkyman and setting up the key database and its
permissions, see “SSL Certificate Management” in z/VM: TCP/IP User’s Guide.

SSL Tracing Information
SSL tracing techniques are for use primarily by IBM service personnel in
determining the cause of an SSL problem. If you encounter a problem and call the
IBM Support Center, you may be asked to obtain trace information or enable one or
more of the diagnostic messages described below.

© Copyright IBM Corp. 2007, 2009 193

Use the gsktrace utility to create a readable copy of SSL trace information. For
information about gsktrace, see “SSL Tracing Information” in z/VM: TCP/IP User’s
Guide.

gsktrace is not intended for use in a production environment and is used for
diagnostic purposes only.

194 z/VM: TCP/IP LDAP Administration Guide

Chapter 16. Performance tuning

Overview
Several server configuration options and facilities significantly affect the
performance of the server. In addition, specific LDAP server backends operate in
conjunction with other products which may require tuning to accommodate the
LDAP server. For example, the SDBM backend provides access to the RACF
database, which has its own product specific tuning options. This topic describes
some of the things to consider when configuring your server for optimal
performance.

General LDAP server performance considerations

Threads
The commThreads configuration option specifies the number of communication
threads that handle requests from clients to the LDAP server. However, the primary
role of each of these threads is to serve as a worker thread for processing client
requests to the directory.

Each communication thread is shared among client connections and is used to
process requests as they occur. Therefore, this option does not need to be set
nearly as large as the expected number of concurrently connected clients.

Each communication thread requires some resources of its own, including low
storage, and other system resources associated with threads. Therefore, you may
want to avoid making this option larger than is needed.

It is recommended that commThreads be set to approximately two times the
number of CPUs that are running in your LPAR. However, this is a general rule
depending upon the activity that your LDAP server experiences.

Debug settings
Activating the LDAP server debug trace facility impacts performance. If optimal
performance is desired, debug should only be activated when it is necessary to
capture diagnostic information.

Storage in the LDAP virtual machine
The LDAP server generally requires a minimum of 96 megabytes to run. This
storage is required for maintaining server-wide information and for processing client
requests.

Note: These are estimates only, and the need for storage can increase depending
on the size of any LDBM directories configured, and the size of the caches.

LDAP server cache tuning
The LDAP server implements many caches to help reduce processing time and to
avoid access to the database. These caches are beneficial when most accesses to
the directory are read operations. Tuning these caches involves monitoring their
effectiveness and adjusting their size to increase the percent hit rate.

© Copyright IBM Corp. 2007, 2009 195

Note: Increasing cache sizes may increase the amount of storage required by the
server.

Some caches are invalidated by update activities. If this is a frequent occurrence,
increasing the cache size may be of little or no benefit. If the cache hit rate is never
any higher than zero for a particular cache, the cache can be disabled by setting its
size to 0. However, even caches with seemingly low cache hit rates might provide
some benefit, therefore, you should generally avoid disabling them unless close
monitoring is done to ensure they are not beneficial.

Most caches in the LDAP server are enabled by default, and the default sizes
generally provide some benefit to most installations. However, many installations
might benefit from additional tuning. The following approach can be used to
evaluate the cache sizes:

v Monitor the cache performance during typical workloads: You can use either the
cn=monitor search or the SMSG ldapsrv DISPLAY MONITOR command to
retrieve current cache statistics. These are described later in this topic.

Note: The monitor search must be used with a scope of subtree or one-level to
retrieve the cache statistics, since the caches are backend specific.

v Examine the cache hit rate, the current number of entries, and the maximum
allowed entries (configured size). Also, note the number of cache refreshes and
the average size of the cache at refresh.

v If the cache hit rate is well below 100% and the cache is frequently fully
populated, consider increasing the cache size. Since this is a configuration
option, you must change the server configuration file and restart the server to
affect the change.

The following caches are implemented in the LDAP server:

DN cache
This cache holds information related to the mapping of distinguished names
between their raw form and their canonical form. Retrieval of information
from this cache reduces processing required to locate entries in the
database. This is a server-wide cache, and is implemented in the internal
schema backend. To alter its setting from the default, adjust the
dnCacheSize configuration option in the global section of the LDAP server
configuration file.

filter cache
This cache holds information related to the mapping of search request
inputs and the result set. This cache is implemented in the LDBM and
GDBM backends. For LDBM and file-based GDBM, this cache helps reduce
processing time for searches with complex filtering. Note that the GDBM
filter cache is disabled, by default.

Operations monitor
If the operations monitor is enabled, the LDAP z/VM server monitors search
statistics for the types of search patterns that are configured and stores search
statistics for each search pattern. The operations monitor supports two types of
search patterns, searchStats and searchIPStats. A searchStats pattern consists
of the search parameters (search base, scope, filter, and attributes to be returned)
and status (success or failure). The searchStats pattern is useful for evaluating the
performance of search patterns. A searchIPStats pattern consists of the same
elements as searchStats pattern does, but also includes the client IP address. The
searchIPStats pattern is useful in determining if there are any specific clients

196 z/VM: TCP/IP LDAP Administration Guide

spamming the LDAP server. The operationsMonitor configuration option
determines which types of search patterns are monitored. See “Monitoring
performance with cn=monitor” on page 199 for more information about the
operations monitor.

A new search pattern is added to the operations monitor whenever the search
pattern of an incoming search does not match one of the existing operations
monitor search patterns. When the number of search patterns exceeds the value of
the operationsMonitorSize configuration option (the cachesize attribute in the
cn=operations,cn=monitor entry), the least recently used search patterns are
trimmed. The total number of trimmed search patterns is stored in the numtrimmed
attribute of the cn=operations,cn=monitor entry. Typically, trimmed search patterns
are not a cause for concern because they are infrequently executed search
patterns. If there is a high volume of trimmed data, you should consider increasing
the value of the operationsMonitorSize configuration option or possibly monitoring
only searchStats patterns. Note that searchIPStats search patterns produce more
search patterns than searchStats patterns because searchIPStats creates a new
search pattern for each unique client IP address even if the rest of the search
pattern is the same. See Table 23 on page 202 for more information about the
cn=operations,cn=monitor entry and its attributes.

LDBM performance considerations
The LDAP server LDBM backend uses the OpenExtensions file system for its
persistent storage of the directory entry data. When the LDAP server is executing,
the entire directory contents are held in virtual storage, including index structures for
quick access.

Holding the entire directory contents in virtual storage provides extremely fast
access to the directory data. LDAP operations that read directory data involve no
DASD I/O during the operation. LDAP operations that update the directory generally
perform DASD I/O only to write the changed information to the LDBM checkpoint
file. The index updates occur only within the LDAP server virtual storage, and are
not stored on DASD.

However, LDBM has inherent scalability limitations. The following resources are
affected by the size of the directory, and are generally proportional to the LDBM
directory size:

v The storage required within the LDAP server virtual machine

v The LDAP server initialization time, both elapsed time and processor time

v The time required to commit the directory

v The DASD space required for the directory, including space for commit
processing.

Storage in the LDAP virtual machine for LDBM data
Since the entire LDBM directory is kept in storage in the LDAP virtual machine, you
need to plan accordingly. The amount of storage required can be estimated from
the size of the LDIF data used to load the directory. The storage needed to contain
the data is about 7 to 10 times the size of the LDIF file.

These are estimates only. Furthermore, these estimates pertain only to the storage
required to hold the LDBM directory representation. You must plan for additional
storage for running the server as mentioned in “Storage in the LDAP virtual
machine” on page 195.

Chapter 16. Performance tuning 197

LDAP server initialization time with LDBM
Whenever the LDAP server is restarted, it reads the entire LDBM directory into
storage and builds the necessary index structures for efficient search processing.
This can take several minutes depending on the speed of the processor, the speed
of the DASD which holds the data, and the competition for resources due to other
workloads. Generally, the initialization elapsed time and the consumed processor
time during initialization are proportional to the size of the directory.

Database commit processing
The LDBM directory contents are kept on DASD in the database files and the
checkpoint file. There is one checkpoint file for the backend, and a separate
database file for each suffix defined in the backend. The database files contain the
overall contents of each entry in the database at the last database commit point.
The checkpoint file contains individual entry updates which occurred since the last
database commit point, recorded as sequential changes beyond the contents of the
database file.

To avoid unbounded growth of the checkpoint file, the database is periodically
committed. Commit processing writes new copies of the database and checkpoint
files such that the new database files contain the up-to-date contents of each entry
in the directory, and the checkpoint file contains no individual file update
information. Database commits occur at the following times:

v When the number of checkpoint entries exceeds the value of the
commitCheckpointEntries option in the LDAP server configuration file.

v When the time of day reaches the commitCheckpointTOD option in the LDAP
server configuration file.

v When the LDAP server COMMIT operator command is invoked.

v When the LDAP server is shut down normally.

v When the LDAP server is restarted and uncommitted updates exist in the
checkpoint file after an abnormal termination of the LDAP server.

Commit processing requires both processor and DASD resources, and the
resources needed increase as the size of the directory increases. For large
directories, commit processing may take a minute or more depending on
competition for resources.

When commit processing occurs, a new copy of each directory file is created in its
entirety before deleting the old copy and before deleting the previous checkpoint
file. Therefore, you should plan enough DASD space to accommodate two copies of
each directory file plus the maximum size of your checkpoint file. The amount of
DASD space needed for the checkpoint file is highly dependent on the nature of the
updates performed, and is best determined by experimentation.

During commit processing, no update requests are processed. Therefore, you
should consider avoiding unplanned commits caused by the configuration option
commitCheckpointEntries. Instead, consider using commitCheckpointTOD,
automated methods of using the LDAP server COMMIT operator command, or
planned shutdowns of the LDAP server to control when commit processing occurs.

DASD space for LDBM data
The amount of space needed to store an LDBM backend in an OpenExtensions file
system is approximately four to six times the size of the expected input LDIF data.
Generally, the space required to hold the LDBM backend data is two to three times

198 z/VM: TCP/IP LDAP Administration Guide

the size of the expected input LDIF data. However, during the LDBM commit
process each of the LDBM database files is copied, therefore, resulting in
occasionally needing twice the amount of file system space.

Monitoring performance with cn=monitor
You can retrieve statistics from the server by issuing a search request with a search
base of cn=monitor and a filter of (objectclass=*). These are the only values
accepted for search base and filter on the monitor search. However, any of the
possible scope values are accepted.

The LDAP server presents monitor data in multiple entries:

v Server-wide statistics are contained in an entry whose distinguished name is
cn=monitor.

v Each configured backend has statistics contained in its own entry named
cn=backendXXXX,cn=monitor, where XXXX is the backend name specified on
the database configuration option in the server configuration file. If no backend
name is specified on the database configuration option, the LDAP server
generates a name. The naming contexts pertaining to the specific backend are
also included in the entry to identify which server backend is being reported.

v Several entries contain statistics for backends that are created by the LDAP
server:

– cn=backendMonitor,cn=monitor - Statistics for the backend handling
cn=monitor searches

– cn=backendSchema,cn=monitor - Statistics for the backend managing the
schema

– cn=backendRootDSE,cn=monitor - Statistics for the backend handling root
DSE searches

v If the operations monitor is on (the operationsMonitorSize configuration option
is not set to zero), the cn=operations,cn=monitor entry contains statistics on
search patterns.

For a scope of:

base Only the cn=monitor entry is returned containing server-wide statistics

one (one-level search)
All backend-specific entries are returned and the operations monitor entry is
returned (if configured)

sub (subtree search)
All entries are returned, including the operations monitor entry (if
configured).

The statistics reported on the cn=monitor subtree search can also be displayed by
using the SMSG command. The command is:
smsg server_id display monitor

where server_id is the LDAP virtual machine user ID.

Statistics generally reflect data gathered since the LDAP server was started.
However, many of the counters can be reset by using the SMSG command. The
command is:
smsg server_id reset monitor

Chapter 16. Performance tuning 199

where server_id is the LDAP virtual machine user ID. In this case, the values reflect
data gathered since the last reset.

The monitor search returns the following attributes:

Table 20. Server statistics
currentconnections Current number of client connections
currenttime Current date and time on the server
livethreads Configured number of communication threads

(commThreads)
maxconnections Configured maximum number of connections

(maxConnections)
maxreachedconnections High water mark for concurrent client connections
resets Number of times statistics were reset
resettime Date and time statistics were last reset
starttime Date and time the server was started
sysmaxconnections System defined maximum number of connections
totalconnections Number of client connections made to the server
version Version of the LDAP server

The statistics reported for the maxconnections, sysmaxconnections,
totalconnections, currentconnections, and maxreachedconnections attribute
values only contain information for network connections. PC connection statistics
are not included in these attribute values.

The sysmaxconnections value may be lower than the maxconnections value
because of system limits. If the value for the maxConnections configuration option
is not valid, the maxconnections attribute value on cn=monitor search reflects the
system maximum connection limit. For information on how the maximum number of
client connections is set in the LDAP server, see the maxConnections
configuration option at “maxConnections” in z/VM: TCP/IP Planning and
Customization.

When statistics are reset, resettime is set to the value of currenttime, resets is
incremented, and maxreachedconnections is set to the value of
currentconnections. None of the other server statistics listed above are affected
by a reset.

Table 21. Server and backend specific statistics
abandonsrequested Number of abandon operations requested
abandonscompleted Number of abandon operations completed
addsrequested Number of add operations requested
addscompleted Number of add operations completed
bindsrequested Number of bind operations requested
bindscompleted Number of bind operations completed
bytessent Number of bytes of data sent
comparesrequested Number of compare operations requested
comparescompleted Number of compare operations completed
deletesrequested Number of delete operations requested
deletescomplketed Number of delete operations completed
entriessent Number of search entries sent
extopsrequested Number of extended operations requested
extopscompleted Number of extended operations completed
modifiesrequested Number of modify operations requested
modifiescompleted Number of modify operations completed
modifydnsrequested Number of modifyDn operations requested

200 z/VM: TCP/IP LDAP Administration Guide

Table 21. Server and backend specific statistics (continued)
modifydnscompleted Number of modifyDn operations completed
opscompleted Number of operations completed
opsinitiated Number of operations initiated
searchreferencessent Number of search references sent
searchesrequested Number of search operations requested
searchescompleted Number of search operations completed
unbindsrequested Number of unbind operations requested
unbindscompleted Number of unbind operations completed
unknownopsrequested Number of unrecognized operations completed
unknownopscompleted Number of unrecognized operations completed

When statistics are reset, all of the server and backend specific statistics listed
above are set to zero.

Table 22. Backend specific statistics
acl_source_cache_size Configured maximum size (in entries) of the ACL

Source cache (aclSourceCacheSize)
acl_source_cache_current Current size (in entries) of the ACL Source cache
acl_source_cache_hit Number of lookups that have hit the ACL Source

cache
acl_source_cache_miss Number of lookups that have missed the ACL

Source cache
acl_source_cache_percent_hit Percent of lookups that have hit the ACL Source

cache
acl_source_cache_refresh Number of times the ACL Source cache was

invalidated
acl_source_cache_refresh_avgsize Average number of entries in the ACL Source

cache at invalidation
dn_cache_size Configured maximum size (in entries) of the DN

cache (dnCacheSize)
dn_cache_current Current size (in entries) of the DN cache
dn_cache_hit Number of lookups that have hit the DN cache
dn_cache_miss Number of lookups that have missed the DN

cache
dn_cache_percent_hit Percent of lookups that have hit the DN cache
dn_cache_refresh Number of times the DN cache was invalidated
dn_cache_refresh_avgsize Average number of entries in the DN cache at

invalidation
dn_to_eid_cache_size Configured maximum size (in entries) of the DN to

Entry ID cache (dnToEidCacheSize)
dn_to_eid_cache_current Current size (in entries) of the DN to Entry ID

cache
dn_to_eid_cache_hit Number of lookups that have hit the DN to Entry

ID cache
dn_to_eid_cache_miss Number of lookups that have missed the DN to

Entry ID cache
dn_to_eid_cache_percent_hit Percent of lookups that have hit the DN to Entry

ID cache
dn_to_eid_cache_refresh Number of times the DN to Entry ID cache was

invalidated
dn_to_eid_cache_refresh_avgsize Average number of entries in the DN to Entry ID

cache at invalidation
entry_cache_size Configured maximum size (in entries) of the Entry

cache (entryCacheSize)
entry_cache_current Current size (in entries) of the Entry cache
entry_cache_hit Number of lookups that have hit the Entry cache

Chapter 16. Performance tuning 201

Table 22. Backend specific statistics (continued)
entry_cache_miss Number of lookups that have missed the Entry

cache
entry_cache_percent_hit Percent of lookups that have hit the Entry cache
entry_cache_refresh Number of times the Entry cache was invalidated
entry_cache_refresh_avgsize Average number of entries in the Entry cache at

invalidation
entry_owner_cache_size Configured maximum size (in entries) of the Entry

Owner cache (entryOwnerCacheSize)
entry_owner_cache_current Current size (in entries) of the Entry Owner cache
entry_owner_cache_hit Number of lookups that have hit the Entry Owner

cache
entry_owner_cache_miss Number of lookups that have missed the Entry

Owner cache
entry_owner_cache_percent_hit Percent of lookups that have hit the Entry Owner

cache
entry_owner_cache_refresh Number of times the Entry Owner cache was

invalidated
entry_owner_cache_refresh_avgsize Average number of entries in the Entry Owner

cache at invalidation
filter_cache_size Configured maximum size (in entries) of the Filter

cache (filterCacheSize)
filter_cache_current Current size (in entries) of the Filter cache
filter_cache_hit Number of lookups that have hit the Filter cache
filter_cache_miss Percent of lookups that have hit the Filter cache
filter_cache_percent_hit Percent of lookups that have hit the Filter cache
filter_cache_refresh Number of times the Filter cache was invalidated
filter_cache_refresh_avgsize Average number of entries in the Filter cache at

invalidation
filter_cache_bypass_limit Configured Filter cache bypass limit

(filterCacheBypassLimit)
namingcontext Suffixes managed by this backend

Note that not all cache statistics shown above appears for each backend. A
backend reports statistics for those caches that it supports. The schema backend
reports dn_cache statistics. An LDBM backend reports filter_cache statistics. A
file-based GDBM backend reports filter_cache statistics.

When statistics are reset, the cache_hit, cache_miss, cache_percent_hit,
cache_refresh, and cache_refresh_avgsize for each cache are reset to zero.
Resetting the statistics has no effect on the cache_size for each cache, nor on the
filter_cache_bypass_limit, since these are configured values. Resetting the
statistics also has no effect on the cache_current for each cache, since the
contents of the caches are not altered by a reset of statistics. Some caches may
get invalidated and refreshed due to directory update operations. When this occurs,
cache_refresh is incremented and cache_current is set to zero to reflect the
refreshed (empty) cache. The cache_hit, cache_miss, and values
cache_percent_hit are accumulated across cache invalidation and refresh until a
RESET MONITOR command is issued or the server ends.

Table 23. Operations monitor statistics
cachesize Configured maximum number of search patterns in

the operations monitor (operationsMonitorSize)
currenttimestamp Current date and time in ZULU time stamp format
entries Total number of search patterns in the operations

monitor entry

202 z/VM: TCP/IP LDAP Administration Guide

Table 23. Operations monitor statistics (continued)
numtrimmed Number of search patterns trimmed from the

operations monitor
resets Number of times the operations monitor statistics

were reset
resettimestamp Date and time in ZULU time stamp format of last

reset or server start up if the reset command was
never issued

searchStats Search statistics for search patterns based on the
search parameters (search base, scope, filter, and
attributes to be returned) and status (success or
failure)

searchIPStats Search statistics for search patterns consisting of
the same elements as the searchStats pattern,
but also including the client IP address

When statistics are reset, resetTimestamp is set to currentTimestamp, resets is
incremented by one, entries is set to zero, numtrimmed is set to zero, and all
search patterns are deleted.

The ZULU time stamp format used in the currenttimestamp and resettimestamp
attribute values is:
yyyymmddhhiiss.uuuuuuZ

Where,

yyyy is year, mm is month, dd is day, hh is hour, ii is minutes, ss is seconds,
uuuuuu is microseconds, Z is a character constant meaning that this time is based
on ZULU time, also known as GMT.

The searchIPStats and searchStats attribute values contain search rates and
other search activity that are being monitored. Depending upon the LDAP server
configuration, there can be searchIPStats and searchStats attribute values
returned in the cn=operations,cn=monitor entry for each search executed against
the LDAP server. The searchStats attribute values contain the total of all data
collected for all searches matching this search pattern no matter the client’s IP
address.

The format of the searchIPStats and searchStats attribute values is:
ldap://clientIP/baseDN?attributes?scope?filter-string?status,numpOps=numOps,avg=avg,
rate=rate,maxRate=maxRate,maxRateTimeStamp=maxRateTimeStamp,
createTimeStamp=createTimeStamp

The following describes the LDAP search pattern parts:

clientIP
Client IP address (omitted for searchStats search patterns).

baseDN
Distinguished name of the base of the search, with _v substituted for
attribute values.

attributes
List of attributes to be returned.

scope base for base object searches, one for one-level searches, and sub for
subtree searches.

Chapter 16. Performance tuning 203

filter-string
Search filter with substitutions for literal attribute values. Excluding the *
character, all strings in values are substituted with _v. For example:
(cn=*bob*bah*) would be (cn=*_v*_v*). There is no substitution on
objectclass equality values when the objectclass is defined in the
schema.

status success for any search operation that results in return code
LDAP_SUCCESS, LDAP_PARTIAL_RESULTS, or LDAP_REFERRAL. Any
other return codes result in status being set to failure.

numOps
Total number of times this search pattern has occurred.

avg Average elapsed time for each occurrence of search pattern in
microseconds.

rate Number of search operations processed in the previous one minute interval.
Starting with server startup or the last reset command, rate is recalculated
for each search pattern every 60 seconds.

maxRate
The highest rate on this entry.

maxRateTimeStamp
Date and time maxRate was last set, in ZULU time stamp format.

createTimeStamp
Date and time this search pattern was first added, in ZULU time stamp
format.

See Table 23 on page 202 for the time stamp format.

In addition to the above syntax, the following character escaping is performed:
comma = %2C
percent = %25
question mark = %3F
space = %20

Note: The comma, percent, and question mark characters are not escaped when
they are used as metacharacters in the search pattern.

For information about monitoring performance with the LDAP server SMSG
DISPLAY MONITOR command, see “SMSG Interface to the LDAP Server” in z/VM:
TCP/IP Planning and Customization.

Note: DISPLAY MONITOR output does not display cn=operations,cn=monitor
data.

Monitor search examples
Following is an example of a monitor search using scope=base. This returns only
statistics related to the entire server:
ldapsearch -h ldaphost -p ldapport -b cn=monitor -s base objectclass=*

cn=monitor
version=z/VM Version 6 Release 1 IBM LDAP Server
livethreads=10
maxconnections=24982
sysmaxconnections=25000
totalconnections=20709
currentconnections=1

204 z/VM: TCP/IP LDAP Administration Guide

maxreachedconnections=15
opsinitiated=62126
opscompleted=62125
abandonsrequested=0
abandonscompleted=0
addsrequested=2318
addscompleted=2318
bindsrequested=20709
bindscompleted=20709
comparesrequested=0
comparescompleted=0
deletesrequested=2228
deletescompleted=2228
extopsrequested=0
extopscompleted=0
modifiesrequested=11501
modifiescompleted=11501
modifydnsrequested=440
modifydnscompleted=440
searchesrequested=4222
searchescompleted=4221
unbindsrequested=20708
unbindscompleted=20708
unknownopsrequested=0
unknownopscompleted=0
entriessent=4221
bytessent=1564656734
searchreferencessent=0
currenttime=Mon Sep 25 16:33:00.187846 2008
starttime=Mon Sep 25 15:52:21.693392 2008
resettime=Mon Sep 25 15:52:21.693392 2008
resets=0

Following is an example of output of a monitor search with scope=one for a server
configured with an LDBM backend. This example shows backend-specific statistics
and operations monitor statistics. The cache statistics shown would be included
only for LDBM, GDBM, and schema backends, because the other backend types do
not implement caches. Operations monitor statistics are included for all backends.

Note that not all operational statistics for each backend are shown in the example
below. They have been omitted from the example only, and appear in full for a
cn=monitor search.
ldapsearch -L -h ldaphost -p ldapport -b cn=monitor -s one objectclass=*

dn: cn=backendLDBM-002,cn=monitor
namingcontext: C=AU
namingcontext: C=LDBM
...
searchreferencessent: 0
filter_cache_cache_size: 5000
filter_cache_cache_current: 0
filter_cache_cachehit: 0
filter_cache_cachemiss: 0
filter_cache_cache_percent_hit: 0.00%
filter_cache_cache_refresh: 16487
filter_cache_cache_refresh_avgsize: 0
filter_cache_cache_bypass_limit: 100

dn: cn=backendMonitor,cn=monitor
namingcontext: CN=MONITOR
...

dn: cn=backendSchema,cn=monitor
namingcontext: CN=SCHEMA
...

Chapter 16. Performance tuning 205

searchreferencessent: 0
dn_cache_size: 1000
dn_cache_current: 1000
dn_cachehit: 123743
dn_cachemiss: 22017
dn_cache_percent_hit: 84.90%
dn_cache_refresh: 0
dn_cache_refresh_avgsize: 0

dn: cn=backendRootDSE,cn=monitor
...

dn: cn=operations,cn=monitor
searchStats: ldap:///OU=_v,O=_v,C=_v?telephoneNumber,postalAddress,mail,uid?o
ne?(objectclass=inetOrgPerson)?failure,numOps=51,avg=230,rate=32,maxRate=32,
maxRateTimeStamp=20080313132741.415477Z,createTimeStamp=20080313132628.36161
8Z
searchStats: ldap:///OU=_v,O=_v??sub?(|(&(sn=_v)(cn=_v*))(description=*_v*))?
success,numOps=42,avg=246,rate=5,maxRate=37,maxRateTimeStamp=20080313132626.
545031Z,createTimeStamp=20080313132615.953823Z
searchStats: ldap:///RACFGROUPID=_v+RACFUSERID=_v,PROFILETYPE=_v,CN=_v?racfco
nnectowner,racfconnectgroupauthority,racfconnectgroupuacc?base?(objectClass=
*)?success,numOps=4,avg=240,rate=0,maxRate=4,maxRateTimeStamp=20080313132628
.047031Z,createTimeStamp=20080313132626.878552Z
searchIPStats: ldap://9.12.47.208/OU=_v,O=_v,C=_v?telephoneNumber,postalAddre
ss,mail,uid?one?(objectclass=inetOrgPerson)?failure,numOps=51,avg=230,rate=3
2,maxRate=32,maxRateTimeStamp=20080313132741.415477Z,createTimeStamp=2008031
3132628.361618Z
searchIPStats: ldap://fe00::f4f7:0:0:7442:750f/OU=_v,O=_v??sub?(|(&(sn=_v)(cn
=_v*))(description=*_v*))?success,numOps=42,avg=246,rate=5,maxRate=37,maxRat
eTimeStamp=20080313132626.545031Z,createTimeStamp=20080313132615.953823Z
searchIPStats: ldap://127.0.0.1/RACFGROUPID=_v+RACFUSERID=_v,PROFILETYPE=_v,C
N=_v?racfconnectowner,racfconnectgroupauthority,racfconnectgroupuacc?base?(o
bjectClass=*)?success,numOps=4,avg=240,rate=0,maxRate=4,maxRateTimeStamp=200
80313132628.047031Z,createTimeStamp=20080313132626.878552Z
currenttimestamp: 20080313132836.785259Z
resettimestamp: 20080313132615.369362Z
resets: 0
numtrimmed: 0
entries: 6
cachesize: 1000

Large access groups considerations
Users with large access groups in z/VM LDAP may experience performance
problems and increased storage usage in the LDAP server as access groups grow
in size.

Some scenarios that require substantial amounts of processing and storage within
the z/VM LDAP server, are:

v A search operation which returns all the members of a large access group. This
includes either a search which returns the many values with the member or
uniqueMember attribute, or a search which returns the many values in the
ibm-allMembers operational attribute.

v A search operation which requests all the members of a large access group, but
the members are not returned because ACL read permissions prevent the
requester from seeing the data.

v Update requests which touch a large access group entry when persistentSearch
on is configured for an LDBM backend that contains the large entry.

206 z/VM: TCP/IP LDAP Administration Guide

These scenarios are also susceptible to the affects of LE HEAPPOOL usage as
described below.

The addressability limits of the z/VM LDAP server may become a factor when there
are hundreds of thousands or millions of members in a single access group.

In this case, consider the following corrective actions:

v Increase the LDAP server’s virtual storage size, if possible.

v Limit the number of members placed within a single access group and partition
the users into separate access groups. The number of members for each access
group which can be managed successfully depends on many factors, such as the
size of the member values, the amount of virtual storage defined for the z/VM
LDAP server, and the level of concurrent activity within the server.

v If possible, avoid configuring persistentSearch on for an LDBM backend which
contains large entries. Some applications that exploit persistent search may only
do so with the changelog, and only need persistentSearch on configured for the
GDBM backend.

LE heap pools considerations
By default, the z/VM LDAP server uses LE heap pools to improve performance.
This facility reduces the processor consumption and allows better parallelism of
concurrent requests within the z/VM LDAP server. However, overall storage
consumption is typically larger with the use of LE heap pools as compared to
running without the facility enabled. Also, once storage is allocated to a given LE
heap pool, it remains allocated to that heap pool and can only be used for future
storage requests that are eligible (based on size) for the given heap pool. For
example, when the z/VM LDAP server must process a large access group entry in
storage, the following may occur:

v While the request is processing, the z/VM LDAP server may use all available
storage in its virtual machine, causing a failure of the request, a failure of other
concurrent requests, or a failure and abnormal termination of the server.

v Due to the sudden, large demand for storage to process the large group, most or
all of the storage available to the z/VM LDAP server may be allocated and
reserved to specific heap pools. Although the z/VM LDAP server may appear to
be available and able to process a variety of requests, many subsequent
requests may fail due to insufficient storage, particularly those for entries with
large or numerous attributes. In the absence of any failures, this large increase in
storage use by the z/VM LDAP server may be detectable by system resource
monitoring products, such as the VM Performance Toolkit.

If these problems occur, consider either tuning the heap pool sizes or disabling the
heap pools for the z/VM LDAP server.

Tuning the heap pool sizes optimizes storage usage for the data within the LDAP
server. See z/OS Language Environment Programming Guide for details on how to
tune the heap pool settings. Note that the procedure for tuning heap pool settings
requires a controlled environment with representative workloads. In this case, the
workload should include the scenarios described earlier which cause the large
demands for storage. Note that it is recommended that the storage reports needed
for the tuning procedure be gathered in a non-production environment because
tracking the storage statistics significantly impacts performance.

Disabling heap pools reduces the total heap storage requirements of the LDAP
server, at the cost of increased processing.

Chapter 16. Performance tuning 207

Overriding the heap pool settings for the LDAP server can be done by specifying
the LE run-time option ’HEAPPOOLS’. This option can be specified on the :parms.
tag in the DTCPARMS file. For more details on setting this parameter, see z/OS:
Language Environment Programming Reference and z/VM: Language Environment
User’s Guide.

GDBM (Changelog) performance considerations
The GDBM database is used only for the changelog function. By its very nature,
this function tends to have a high intensity of update activity compared to read
activity. Since update activity is generally more costly than read activity, this function
should only be enabled when its use is actually needed.

The following should be noted:

v The distinguished names (DNs) of entries and the searchable attributes within
entries in GDBM tend to be well bounded in size and content. As such, the
default sizes for the DN_TRUNC column in the DIR_ENTRY table and the
VALUE column in the DIR_SEARCH table do not require adjustment.

v Since most GDBM requests are update operations, the search filter cache is
disabled by default. You may enable the cache, if desired, but if this is done, it is
recommended that the cache is monitored to ensure it is providing a benefit.

v When the changeLogMaxAge or changeLogMaxEntries option is specified in
the GDBM section of the LDAP server configuration file, the change log is
periodically trimmed, based on the limits set in the configuration file. For more
information about these configuration options, see “Configuration File Options” in
z/VM: TCP/IP Planning and Customization.

SDBM performance considerations
The z/VM LDAP server SDBM backend allows access to the RACF database. Most
tuning that affects performance in this area is within the RACF product.

Also, see SDBM operational behavior for details regarding different types of LDAP
requests supported, and the RACF operations issued by these requests. This
information can also be helpful when assessing RACF tuning considerations.

When writing applications which only require authentication to the SDBM backend
by using LDAP bind requests, performance can be improved by specifying the
authenticateOnly control on the bind request within the application. See
authenticateOnly for more information.

208 z/VM: TCP/IP LDAP Administration Guide

Appendix A. Initial LDAP server schema

This appendix shows the initial schema established when the LDAP server is first
started. The initial schema is always part of the LDAP server schema and the
elements in the initial schema cannot be deleted. With several exceptions, the initial
schema cannot be modified. See Updating the schema for more information.
cn=schema
cn=schema
objectclass=ibmSubschema
objectclass=subentry
objectclass=subschema
objectclass=top
subtreespecification=NULL
ldapsyntaxes=(1.3.18.0.2.8.1 DESC 'IBM attribute type description')
ldapsyntaxes=(1.3.18.0.2.8.3 DESC 'IBM entry UUID')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.3 DESC 'Attribute type description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.5 DESC 'Binary')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.12 DESC 'Distinguished name')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory string')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.16 DESC 'DIT content rule description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.17 DESC 'DIT structure rule description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.24 DESC 'Generalized time')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.26 DESC 'IA5 string')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.27 DESC 'Integer')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.30 DESC 'Matching rule description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.31 DESC 'Matching rule use description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.35 DESC 'Name form description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.37 DESC 'Object class description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.38 DESC 'Object identifier')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.40 DESC 'Octet string')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.50 DESC 'Telephone number')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.53 DESC 'UTC time')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.54 DESC 'LDAP syntax description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.58 DESC 'Substring assertion')
matchingrules=(1.3.6.1.4.1.1466.109.114.1 NAME ('caseExactIA5Match')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

matchingrules=(1.3.6.1.4.1.1466.109.114.2 NAME ('caseIgnoreIA5Match')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

matchingrules=(1.3.18.0.2.4.405 NAME ('distinguishedNameOrderingMatch')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

matchingrules=(1.3.18.0.2.22.2 NAME ('ibm-entryUuidMatch') SYNTAX 1.3.18.0.2.8.3)
matchingrules=(2.5.13.0 NAME ('objectIdentifierMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
matchingrules=(2.5.13.1 NAME ('distinguishedNameMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
matchingrules=(2.5.13.2 NAME ('caseIgnoreMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
matchingrules=(2.5.13.3 NAME ('caseIgnoreOrderingMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
matchingrules=(2.5.13.4 NAME ('caseIgnoreSubstringsMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
matchingrules=(2.5.13.5 NAME ('caseExactMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
matchingrules=(2.5.13.6 NAME ('caseExactOrderingMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
matchingrules=(2.5.13.7 NAME ('caseExactSubstringsMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
matchingrules=(2.5.13.13 NAME ('booleanMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)
matchingrules=(2.5.13.14 NAME ('integerMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
matchingrules=(2.5.13.17 NAME ('octetStringMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.40)
matchingrules=(2.5.13.20 NAME ('telephoneNumberMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)
matchingrules=(2.5.13.21 NAME ('telephoneNumberSubstringsMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)
matchingrules=(2.5.13.25 NAME ('utcTimeMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.53)
matchingrules=(2.5.13.27 NAME ('generalizedTimeMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
matchingrules=(2.5.13.28 NAME ('generalizedTimeOrderingMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
matchingrules=(2.5.13.29 NAME ('integerFirstComponentMatch') SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
matchingrules=(2.5.13.30 NAME ('objectIdentifierFirstComponentMatch')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

attributetypes=(0.9.2342.19200300.100.1.1 NAME ('uid') DESC 'User shortname or userid'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attributetypes=(0.9.2342.19200300.100.1.23 NAME ('lastmodifiedtime') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 USAGE userApplications)
attributetypes=(0.9.2342.19200300.100.1.24 NAME ('lastmodifiedby') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE userApplications)
attributetypes=(1.2.840.113556.1.4.77 NAME ('maxTicketAge') DESC 'Value defining the maximum lifetime of a user ticket'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 USAGE userApplications) attributetypes=(1.2.840.113556.1.4.656
NAME ('userPrincipalName') DESC 'Primary security identity in the form <principal>@<realm>'
EQUALITY caseExactMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
attributetypes=(1.2.840.113556.1.4.867 NAME ('altSecurityIdentities') DESC 'Alternate security identities'
EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications)
attributetypes=(1.3.6.1.1.4 NAME ('vendorName')
DESC 'Name of the company that implemented the LDAP server' EQUALITY caseExactMatch
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE dSAOperation)

attributetypes=(1.3.6.1.1.5 NAME ('vendorVersion')
DESC 'Version of the LDAP Server implementation' EQUALITY caseExactMatch SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE dSAOperation)

attributetypes=(1.3.6.1.4.1.1466.101.120.5 NAME ('namingContexts') DESC 'LDAP server naming contexts'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE dSAOperation)

attributetypes=(1.3.6.1.4.1.1466.101.120.6 NAME ('altServer') DESC 'Alternate LDAP server'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE dSAOperation)

attributetypes=(1.3.6.1.4.1.1466.101.120.7 NAME ('supportedExtension')
DESC 'Extensions supported by this server' SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
USAGE dSAOperation)

attributetypes=(1.3.6.1.4.1.1466.101.120.13 NAME ('supportedControl')
DESC 'Controls supported by this server' SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
USAGE dSAOperation)

attributetypes=(1.3.6.1.4.1.1466.101.120.14 NAME ('supportedSASLMechanisms')
DESC 'SASL mechanisms supported by this server'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE dSAOperation)

attributetypes=(1.3.6.1.4.1.1466.101.120.15 NAME ('supportedLDAPVersion')
DESC 'LDAP protocol versions supported by this server'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 USAGE dSAOperation)

attributetypes=(1.3.6.1.4.1.1466.101.120.16 NAME ('ldapSyntaxes') DESC 'LDAP syntaxes'

© Copyright IBM Corp. 2007, 2009 209

SYNTAX 1.3.6.1.4.1.1466.115.121.1.54 USAGE directoryOperation)
attributetypes=(1.3.18.0.2.4.155 NAME ('secretKey')
DESC 'Attribute is always stored in encrypted form' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.185 NAME ('sysplex') DESC 'Identifies the name of an OS/390 sysplex'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.186 NAME ('profileType')
DESC 'Identifies the name of a OS/390 Security Server profile' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.187 NAME ('racfid')
DESC 'Identifies the name of a OS/390 Security Server userid or groupid' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.188 NAME ('racfAuthorizationDate')
DESC 'Date is displayed in yy.ddd format' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.189 NAME ('racfOwner') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.190 NAME ('racfInstallationData') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.191 NAME ('racfDatasetModel') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.192 NAME ('racfSuperiorGroup') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.193 NAME ('racfGroupNoTermUAC') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.194 NAME ('racfSubGroupName') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.195 NAME ('racfGroupUserids') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.197 NAME ('racfAttributes')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.198 NAME ('racfPassword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.199 NAME ('racfPasswordInterval') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.200 NAME ('racfPasswordChangeDate') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.201 NAME ('racfProgrammerName') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.202 NAME ('racfDefaultGroup') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.203 NAME ('racfLastAccess') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.204 NAME ('racfSecurityLevel') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.205 NAME ('racfSecurityCategoryList')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.206 NAME ('racfRevokeDate') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.207 NAME ('racfResumeDate') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.208 NAME ('racfLogonDays') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.209 NAME ('racfLogonTime') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.210 NAME ('racfClassName')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.211 NAME ('racfConnectGroupName') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.212 NAME ('racfConnectGroupAuthority') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.213 NAME ('racfConnectGroupUACC') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.214 NAME ('racfSecurityLabel') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.215 NAME ('SAFDfpDataApplication') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.216 NAME ('SAFDfpDataClass') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.217 NAME ('SAFDfpManagementClass') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.218 NAME ('SAFDfpStorageClass') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.219 NAME ('racfOmvsGroupId') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.220 NAME ('racfOvmGroupId') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.221 NAME ('SAFAccountNumber') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.222 NAME ('SAFDefaultCommand') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.223 NAME ('SAFDestination') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.224 NAME ('SAFHoldClass') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.225 NAME ('SAFJobClass') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.226 NAME ('SAFMessageClass') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.227 NAME ('SAFDefaultLoginProc') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.228 NAME ('SAFLogonSize') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.229 NAME ('SAFMaximumRegionSize') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.230 NAME ('SAFDefaultSysoutClass') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.231 NAME ('SAFUserdata') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.232 NAME ('SAFDefaultUnit') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.233 NAME ('SAFTsoSecurityLabel') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.234 NAME ('racfPrimaryLanguage') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.235 NAME ('racfSecondaryLanguage') DESC 'Secondary language'

Initial LDAP server schema

210 z/VM: TCP/IP LDAP Administration Guide

SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)
attributetypes=(1.3.18.0.2.4.236 NAME ('racfOperatorIdentification') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.237 NAME ('racfOperatorClass')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.238 NAME ('racfOperatorPriority') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.239 NAME ('racfOperatorReSignon') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.240 NAME ('racfTerminalTimeout') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.241 NAME ('racfStorageKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.242 NAME ('racfAuthKeyword')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.243 NAME ('racfMformKeyword')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.244 NAME ('racfLevelKeyword')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.245 NAME ('racfMonitorKeyword')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.246 NAME ('racfRoutcodeKeyword')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.247 NAME ('racfLogCommandResponseKeyword')
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.248 NAME ('racfMGIDKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.249 NAME ('racfDOMKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.250 NAME ('racfKEYKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.251 NAME ('racfCMDSYSKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.252 NAME ('racfUDKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.253 NAME ('racfMscopeSystems')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)
attributetypes=(1.3.18.0.2.4.254 NAME ('racfAltGroupKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.255 NAME ('racfAutoKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.256 NAME ('racfWorkAttrUsername') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.257 NAME ('racfBuilding') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.258 NAME ('racfDepartment') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.259 NAME ('racfRoom') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.260 NAME ('racfWorkAttrAccountNumber') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.261 NAME ('racfAddressLine1') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.262 NAME ('racfAddressLine2') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.263 NAME ('racfAddressLine3') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.264 NAME ('racfAddressLine4') EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.265 NAME ('racfOmvsUid') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.266 NAME ('racfOmvsHome') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.267 NAME ('racfOmvsInitialProgram') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.268 NAME ('racfNetviewInitialCommand') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.269 NAME ('racfDefaultConsoleName') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.270 NAME ('racfCTLKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.271 NAME ('racfMSGRCVRKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.272 NAME ('racfNetviewOperatorClass') SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.273 NAME ('racfDomains')
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.274 NAME ('racfNGMFADMKeyword') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.275 NAME ('racfDCEUUID') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.276 NAME ('racfDCEPrincipal') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.277 NAME ('racfDCEHomeCell') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.278 NAME ('racfDCEHomeCellUUID') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.279 NAME ('racfDCEAutoLogin') SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.280 NAME ('racfOvmUid') SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.281 NAME ('racfOvmHome') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.282 NAME ('racfOvmInitialProgram') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.283 NAME ('racfOvmFileSystemRoot') EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.285 NAME ('aclEntry') DESC 'Defines an access list entry'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.286 NAME ('aclPropagate') DESC 'Defines access list subtree propagation'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.287 NAME ('aclSource') DESC 'Source of the access list for an entry'
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.288 NAME ('entryOwner') DESC 'Defines an entry owner'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.289 NAME ('ownerPropagate') DESC 'Defines entry owner subtree propagation'

Initial LDAP server schema

Appendix A. Initial LDAP server schema 211

SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 USAGE directoryOperation)
attributetypes=(1.3.18.0.2.4.290 NAME ('ownerSource') DESC 'Source of the owner for an entry'
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.298 NAME ('replicaHost') DESC 'Specifies the replica host name'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.299 NAME ('replicaBindDN') DESC 'Specifies the replica bind DN'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.300 NAME ('replicaCredentials' 'replicaBindCredentials')
DESC 'Specifies the replica bind credentials' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.301 NAME ('replicaPort') DESC 'Specifies the replica bind port'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.302 NAME ('replicaBindMethod') DESC 'Specifies the replica bind method'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.303 NAME ('replicaUseSSL')
DESC 'Specifies SSL usage when binding to replica' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.304 NAME ('replicaUpdateTimeInterval')
DESC 'Specifies replication update interval' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.470 NAME ('ibmAttributeTypes')
DESC 'IBM attribute types' SYNTAX 1.3.18.0.2.8.1 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.826 NAME ('racfOmvsMaximumAddressSpaceSize')
DESC 'Represents the ASSIZEMAX(address-space-size) field of the OMVS RACF SEGMENT' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.827 NAME ('racfOmvsMaximumCPUTime')
DESC 'Represents the CPUTIMEMAX(cpu-time) field of the RACF OMVS SEGMENT' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.828 NAME ('racfOmvsMaximumFilesPerProcess')
DESC 'Represents the FILEPROCMAX(files-per-process) field of the RACF OMVS SEGMENT' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.829 NAME ('racfOmvsMaximumMemoryMapArea')
DESC 'Represents the MMAPAREAMAX(memory-map-size) field of the RACF OMVS SEGMENT' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.830 NAME ('racfOmvsMaximumProcessesPerUID')
DESC 'Represents the PROCUSERMAX(processes-per-UID) field of the RACF OMVS SEGMENT' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.831 NAME ('racfOmvsMaximumThreadsPerProcess')
DESC 'Represents the THREADSMAX(threads-per-process) field of the RACF OMVS SEGMENT' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1068 NAME ('ibm-kn' 'ibm-kerberosName')
DESC 'Access control list definition for a Kerberos identity in the format <principal>@<realm>'
EQUALITY caseExactMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1088 NAME ('krbAliasedObjectName')
DESC 'Contains the DN of the aliased object' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1091 NAME ('krbPrincipalName')
DESC 'Kerberos principal name in the format <princ-name>@<realm-name>' EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1099 NAME ('racfLNotesShortName')
DESC 'represents the SNAME field of the RACF LNOTES segment' EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1100 NAME ('racfNDSUserName')
DESC 'Represents the UNAME field of the RACF NDS segment' EQUALITY caseExactMatch SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1144 NAME ('racfConnectAttributes') DESC 'RACF Connect Attributes'
EQUALITY caseIgnoreIA5Match SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1145 NAME ('racfConnectAuthDate') DESC 'RACF Connect Auth Date'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1146 NAME ('racfConnectCount') DESC 'RACF Connect Count'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1147 NAME ('racfConnectLastConnect') DESC 'RACF Connect Last Connect'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1148 NAME ('racfConnectOwner') DESC 'RACF Connect Owner'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1149 NAME ('racfConnectResumeDate') DESC 'RACF Connect Resume Date'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1150 NAME ('racfConnectRevokeDate') DESC 'RACF Connect Revoke Date'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1151 NAME ('racfGroupId') DESC 'RACF group ID'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1152 NAME ('racfUserid') DESC 'RACF userid' EQUALITY caseIgnoreIA5Match
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1153 NAME ('racfCurKeyVersion') DESC 'Current key version'
EQUALITY caseIgnoreMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1154 NAME ('krbHintAliases')
DESC 'Entries that can be associated with this entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1155 NAME ('ibm-changeInitiatorsName')
DESC 'The DN of the entity that initiated the change' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1156 NAME ('krbPrincSubtree')
DESC 'List of DNs under which principals in this realm reside' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1157 NAME ('krbRealmName-V2') DESC 'Kerberos realm name'
EQUALITY caseExactMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1158 NAME ('ibm-nativeId') DESC 'Userid in the native security manager'
EQUALITY caseIgnoreMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1162 NAME ('racfLDAPBindDN') DESC 'RACF LDAP Bind DN'
EQUALITY caseExactMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1163 NAME ('racfLDAPBindPw') DESC 'RACF LDAP Bind Password'
EQUALITY caseExactMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1164 NAME ('racfLDAPHost') DESC 'RACF LDAP Host'
EQUALITY caseIgnoreMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.1780 NAME ('ibm-EntryUUID')
DESC 'Uniquely identifies an LDAP entry throughout its life' SINGLE-VALUE NO-USER-MODIFICATION
SYNTAX 1.3.18.0.2.8.3 USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.1913 NAME ('racfGroupUniversal')
DESC 'RACF universal group indicator' EQUALITY caseIgnoreIA5Match SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.2007 NAME ('racfEncryptType') DESC 'RACF encrypt type'
EQUALITY caseIgnoreIA5Match SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.2239 NAME ('racfLDAPProf') DESC 'RACF LDAP Profile Name'
EQUALITY caseIgnoreMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.2240 NAME ('racfOmvsGroupIdKeyword') DESC 'RACF group OMVS keyword'
EQUALITY caseIgnoreMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

Initial LDAP server schema

212 z/VM: TCP/IP LDAP Administration Guide

attributetypes=(1.3.18.0.2.4.2241 NAME ('racfOmvsUidKeyword') DESC 'RACF user OMVS keyword'
EQUALITY caseIgnoreMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.2242 NAME ('ibm-memberGroup')
DESC 'Identifies subgroups of a parent group' EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.2243 NAME ('ibm-allMembers') DESC 'Lists all members of a group'
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.2244 NAME ('ibm-allGroups') DESC 'Lists all groups containing an entry'
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.2449 NAME ('ibm-slapdDN')
DESC 'This attribute is used to sort search results by the entry DN' SINGLE-VALUE NO-USER-MODIFICATION
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(1.3.18.0.2.4.2481 NAME ('ibm-supportedCapabilities')
DESC 'Capabilities supported by this server' NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.2482 NAME ('ibm-enabledCapabilities')
DESC 'Capabilities that are enabled for use on this server' NO-USER-MODIFICATION
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.3081 NAME ('ibm-saslDigestRealmName')
DESC 'DIGEST-MD5 realm names for this server' NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.3089 NAME ('racfOmvsSharedMemoryMaximum')
DESC 'Represents the SHMEMMAX(shared-memory-size) field of the RACF user OMVS segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3090 NAME ('racfOmvsMemoryLimit')
DESC 'Represents the MEMLIMIT(non-shared-memory-size) field of the RACF user OMVS segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3091 NAME ('racfPasswordEnvelope')
DESC 'Envelope containing user password information' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3094 NAME ('firstChangeNumber')
DESC 'Change number for the earliest entry in the server change log' EQUALITY integerMatch
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.3095 NAME ('lastChangeNumber')
DESC 'Change number for the latest entry in the server change log' EQUALITY integerMatch SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.3097 NAME ('ldapServiceName')
DESC 'LDAP service name for this server as host@realm' SINGLE-VALUE NO-USER-MODIFICATION
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.3098 NAME ('ibmDirectoryVersion') DESC 'Version of this directory server'
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE dSAOperation)

attributetypes=(1.3.18.0.2.4.3128 NAME ('ibm-slapdLog') DESC 'Log path and file name.'
EQUALITY caseExactMatch SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3152 NAME ('ibm-slapdReplMaxErrors')
DESC 'Limit to allowed errors per replication agreement, 0=unlimited. The value is dynamic.'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3215 NAME ('racfTslKey')
DESC 'Represents the TSLKEY(transaction-security-level-key) field of the RACF user CICS segment.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3216 NAME ('racfRslKey')
DESC 'Represents the RSLKEY(resource-security-level-key) field of the RACF user CICS segment.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3239 NAME ('racfHcKeyword')
DESC 'Represents the HC field of the RACF user OPERPARM segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3240 NAME ('racfNGMFVSPNKeyword')
DESC 'Represents the NGMFVSPN field of the RACF user NETVIEW segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3241 NAME ('racfIntidsKeyword')
DESC 'Represents the INTIDS field of the RACF user OPERPARM segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3242 NAME ('racfPassPhrase')
DESC 'Represents the passphrase field of the RACF user base segment' EQUALITY caseExactMatch
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3243 NAME ('racfUnknidsKeyword')
DESC 'Represents the UNKNIDS field of the RACF user OPERPARM segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3244 NAME ('racfHavePasswordEnvelope')
DESC 'Represents the password-enveloped field of the RACF user base segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3245 NAME ('racfPassPhraseChangeDate')
DESC 'Represents the last change date of the passphrase field of the RACF user base segment'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3342 NAME ('racfHavePassPhraseEnvelope')
DESC 'Represents the password phrase-enveloped field of the RACF user base segment'
SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3343 NAME ('racfPassPhraseEnvelope')
DESC 'Envelope containing user password phrase information' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 USAGE userApplications)

attributetypes=(1.3.18.0.2.4.3344 NAME ('racfKerbKeyFrom')
DESC 'Represents the KEYFROM field of the RACF user KERB segment' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 USAGE userApplications)

attributetypes=(2.5.4.0 NAME ('objectClass') SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
USAGE userApplications)

attributetypes=(2.5.4.1 NAME ('aliasedObjectName' 'aliasedEntryName')
DESC 'True name for an alias entry' SINGLE-VALUE SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications)

attributetypes=(2.5.4.3 NAME ('cn' 'commonName') SUP name USAGE userApplications)
attributetypes=(2.5.4.6 NAME ('c' 'countryName') DESC 'A two-letter ISO 3166 country code' SUP name
SINGLE-VALUE USAGE userApplications)

attributetypes=(2.5.4.7 NAME ('l' 'localityName')
DESC 'The name of a locality, such as a city, county or other geographic region' SUP name
USAGE userApplications)

attributetypes=(2.5.4.8 NAME ('st' 'stateOrProvince' 'stateOrProvinceName')
DESC 'The full name of a state or province' SUP name USAGE userApplications)

attributetypes=(2.5.4.10 NAME ('o' 'organizationName' 'organization')
DESC 'The name of an organization' SUP name USAGE userApplications)

attributetypes=(2.5.4.11 NAME ('ou' 'organizationalUnit' 'organizationalUnitName')
DESC 'The name of an organizational unit' SUP name USAGE userApplications)

attributetypes=(2.5.4.13 NAME ('description') DESC 'Provides a description of a directory entry'
EQUALITY caseIgnoreMatch SUBSTR caseIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications)

attributetypes=(2.5.4.15 NAME ('businessCategory')
DESC 'Describes the kind of business performed by an organization' EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

Initial LDAP server schema

Appendix A. Initial LDAP server schema 213

attributetypes=(2.5.4.31 NAME ('member') DESC 'Defines a member of a set' SUP dn
USAGE userApplications)

attributetypes=(2.5.4.32 NAME ('owner')
DESC 'Specifies the DN of the person responsible for the entry' SUP dn USAGE userApplications)

attributetypes=(2.5.4.34 NAME ('seeAlso')
DESC 'Identifies another entry that may contain information related this entry' SUP dn
USAGE userApplications)

attributetypes=(2.5.4.35 NAME ('userPassword') DESC 'Defines the user password'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 USAGE userApplications)

attributetypes=(2.5.4.41 NAME ('name') SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
attributetypes=(2.5.4.49 NAME ('dn' 'distinguishedName') SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications)

attributetypes=(2.5.4.50 NAME ('uniqueMember') DESC 'Defines a member of a set' SUP dn
USAGE userApplications)

attributetypes=(2.5.18.1 NAME ('createTimestamp') DESC 'Entry creation time' SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 USAGE directoryOperation)

attributetypes=(2.5.18.2 NAME ('modifyTimestamp') DESC 'Time of last entry modification' SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 USAGE directoryOperation)

attributetypes=(2.5.18.3 NAME ('creatorsName') DESC 'Name of entry creator' SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(2.5.18.4 NAME ('modifiersName') DESC 'Name of last entry modifier' SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(2.5.18.6 NAME ('subtreeSpecification') DESC 'Subtree specification' SINGLE-VALUE
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE directoryOperation)

attributetypes=(2.5.18.10 NAME ('subschemaSubentry') DESC 'Schema associated with an entry'
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE directoryOperation)

attributetypes=(2.5.21.1 NAME ('ditStructureRules') DESC 'Directory structure rules'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.17 USAGE directoryOperation)

attributetypes=(2.5.21.2 NAME ('ditContentRules') DESC 'Directory content rules'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.16 USAGE directoryOperation)

attributetypes=(2.5.21.4 NAME ('matchingRules') DESC 'LDAP matching rules'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.30 USAGE directoryOperation)

attributetypes=(2.5.21.5 NAME ('attributeTypes') DESC 'LDAP attribute types'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.3 USAGE directoryOperation)

attributetypes=(2.5.21.6 NAME ('objectClasses') DESC 'LDAP object classes'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.37 USAGE directoryOperation)

attributetypes=(2.5.21.7 NAME ('nameForms') DESC 'Directory name forms'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.35 USAGE directoryOperation)

attributetypes=(2.5.21.8 NAME ('matchingRuleUse') DESC 'LDAP matching rule uses'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.31 USAGE directoryOperation)

attributetypes=(2.16.840.1.113730.3.1.5 NAME ('changeNumber')
DESC 'Contains the assigned change number for the modification' EQUALITY integerMatch SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.6 NAME ('targetDN')
DESC 'Defines the distinguished name of an entry that was modified' EQUALITY distinguishedNameMatch
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.7 NAME ('changeType')
DESC 'Describes the type of change performed on an entry (add, modify, delete, modrdn)'
EQUALITY caseIgnoreMatch SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.8 NAME ('changes')
DESC 'Defines changes made to a directory server (LDIF format)' SINGLE-VALUE NO-USER-MODIFICATION
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.9 NAME ('newRdn')
DESC 'The new RDN of an entry' EQUALITY distinguishedNameMatch SINGLE-VALUE NO-USER-MODIFICATION
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.10 NAME ('deleteOldRdn')
DESC 'A flag which indicates if the old RDN should be retained as an entry attribute' SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.11 NAME ('newSuperior')
DESC 'Specifies the name of the new superior of the existing entry' EQUALITY distinguishedNameMatch
SINGLE-VALUE NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.34 NAME ('ref')
DESC 'Specifies the URI to continue the LDAP operation' EQUALITY caseExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.35 NAME ('changeLog')
DESC 'Distinguished name of the server change log' EQUALITY distinguishedNameMatch NO-USER-MODIFICATION
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 USAGE dSAOperation)

attributetypes=(2.16.840.1.113730.3.1.77 NAME ('changeTime') DESC 'Time last changed' SINGLE-VALUE
NO-USER-MODIFICATION SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 USAGE userApplications)

attributetypes=(2.16.840.1.113730.3.1.198 NAME ('memberURL')
DESC 'Specifies a URL associated with each member of a group' EQUALITY caseExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

ibmattributetypes=(0.9.2342.19200300.100.1.1 ACCESS-CLASS normal)
ibmattributetypes=(0.9.2342.19200300.100.1.23 ACCESS-CLASS system)
ibmattributetypes=(0.9.2342.19200300.100.1.24 ACCESS-CLASS system)
ibmattributetypes=(1.2.840.113556.1.4.77 ACCESS-CLASS normal)
ibmattributetypes=(1.2.840.113556.1.4.656 ACCESS-CLASS normal)
ibmattributetypes=(1.2.840.113556.1.4.867 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.1.4 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.1.5 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.4.1.1466.101.120.5 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.4.1.1466.101.120.6 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.4.1.1466.101.120.7 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.4.1.1466.101.120.13 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.4.1.1466.101.120.14 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.4.1.1466.101.120.15 ACCESS-CLASS normal)
ibmattributetypes=(1.3.6.1.4.1.1466.101.120.16 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.155 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.185 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.186 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.187 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.188 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.189 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.190 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.191 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.192 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.193 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.194 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.195 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.197 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.198 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.199 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.200 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.201 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.202 ACCESS-CLASS sensitive)

Initial LDAP server schema

214 z/VM: TCP/IP LDAP Administration Guide

ibmattributetypes=(1.3.18.0.2.4.203 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.204 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.205 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.206 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.207 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.208 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.209 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.210 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.211 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.212 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.213 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.214 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.215 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.216 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.217 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.218 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.219 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.220 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.221 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.222 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.223 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.224 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.225 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.226 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.227 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.228 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.229 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.230 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.231 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.232 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.233 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.234 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.235 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.236 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.237 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.238 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.239 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.240 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.241 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.242 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.243 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.244 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.245 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.246 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.247 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.248 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.249 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.250 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.251 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.252 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.253 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.254 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.255 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.256 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.257 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.258 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.259 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.260 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.261 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.262 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.263 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.264 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.265 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.266 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.267 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.268 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.269 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.270 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.271 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.272 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.273 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.274 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.275 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.276 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.277 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.278 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.279 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.280 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.281 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.282 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.283 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.285 ACCESS-CLASS restricted)
ibmattributetypes=(1.3.18.0.2.4.286 ACCESS-CLASS restricted)
ibmattributetypes=(1.3.18.0.2.4.287 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.288 ACCESS-CLASS restricted)
ibmattributetypes=(1.3.18.0.2.4.289 ACCESS-CLASS restricted)
ibmattributetypes=(1.3.18.0.2.4.290 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.298 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.299 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.300 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.301 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.302 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.303 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.304 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.470 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.826 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.827 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.828 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.829 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.830 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.831 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1068 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.1088 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.1091 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.1099 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1100 ACCESS-CLASS sensitive)

Initial LDAP server schema

Appendix A. Initial LDAP server schema 215

ibmattributetypes=(1.3.18.0.2.4.1144 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1145 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1146 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1147 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1148 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1149 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1150 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1151 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1152 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1153 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1154 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.1155 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.1156 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.1157 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.1158 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.1162 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1163 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.1164 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.1780 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.1913 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.2007 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.2239 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.2240 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.2241 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.2242 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.2243 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.2244 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.2449 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.2481 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.2482 ACCESS-CLASS system)
ibmattributetypes=(1.3.18.0.2.4.3081 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.3089 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3090 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3091 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.3094 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.3095 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.3097 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.3098 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.3128 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.3152 ACCESS-CLASS normal)
ibmattributetypes=(1.3.18.0.2.4.3215 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3216 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3239 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3240 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3241 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3242 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.3243 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3244 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3245 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.3342 ACCESS-CLASS sensitive)
ibmattributetypes=(1.3.18.0.2.4.3343 ACCESS-CLASS critical)
ibmattributetypes=(1.3.18.0.2.4.3344 ACCESS-CLASS sensitive)
ibmattributetypes=(2.5.4.0 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.1 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.3 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.6 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.7 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.8 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.10 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.11 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.13 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.15 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.31 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.32 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.34 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.35 ACCESS-CLASS critical)
ibmattributetypes=(2.5.4.41 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.49 ACCESS-CLASS normal)
ibmattributetypes=(2.5.4.50 ACCESS-CLASS normal)
ibmattributetypes=(2.5.18.1 ACCESS-CLASS system)
ibmattributetypes=(2.5.18.2 ACCESS-CLASS system)
ibmattributetypes=(2.5.18.3 ACCESS-CLASS system)
ibmattributetypes=(2.5.18.4 ACCESS-CLASS system)
ibmattributetypes=(2.5.18.6 ACCESS-CLASS system)
ibmattributetypes=(2.5.18.10 ACCESS-CLASS system)
ibmattributetypes=(2.5.21.1 ACCESS-CLASS system)
ibmattributetypes=(2.5.21.2 ACCESS-CLASS system)
ibmattributetypes=(2.5.21.4 ACCESS-CLASS system)
ibmattributetypes=(2.5.21.5 ACCESS-CLASS system)
ibmattributetypes=(2.5.21.6 ACCESS-CLASS system)
ibmattributetypes=(2.5.21.7 ACCESS-CLASS system)
ibmattributetypes=(2.5.21.8 ACCESS-CLASS system)
ibmattributetypes=(2.16.840.1.113730.3.1.5 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.6 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.7 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.8 ACCESS-CLASS sensitive)
ibmattributetypes=(2.16.840.1.113730.3.1.9 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.10 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.11 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.34 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.35 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.77 ACCESS-CLASS normal)
ibmattributetypes=(2.16.840.1.113730.3.1.198 ACCESS-CLASS normal)
objectclasses=(1.3.18.0.2.6.28 NAME ('container') DESC 'An object that can contain other objects'
STRUCTURAL SUP (top) MUST (cn))

objectclasses=(1.3.18.0.2.6.55 NAME ('racfbase') DESC 'Represents the base of the Directory
Information Tree that publishs information stored by the OS/390 Security Server RACF service'
STRUCTURAL SUP (top) MAY (sysplex))

objectclasses=(1.3.18.0.2.6.56 NAME ('racfProfileType')
DESC 'Represents a container below which individual RACF profile entries will be published'
STRUCTURAL SUP (top) MUST (profileType))

objectclasses=(1.3.18.0.2.6.57 NAME ('racfBaseCommon')
DESC 'Represents a commong base class for all RACF profiles' ABSTRACT SUP (top)
MAY (racfOwner $ racfInstallationData $ racfDatasetModel $ racfAuthorizationDate))

objectclasses=(1.3.18.0.2.6.58 NAME ('racfUser') DESC 'Represents a RACFUSER Profile entry'
STRUCTURAL SUP (racfBaseCommon) MUST (racfid) MAY (racfAuthorizationDate $ racfAttributes $

Initial LDAP server schema

216 z/VM: TCP/IP LDAP Administration Guide

racfPassword $ racfPasswordChangeDate $ racfPasswordEnvelope $ racfPasswordInterval $
racfProgrammerName $ racfDefaultGroup $ racfLastAccess $ racfSecurityLabel $
racfSecurityCategoryList $ racfRevokeDate $ racfResumeDate $ racfLogonDays $ racfLogonTime $
racfClassName $ racfConnectGroupName $ racfConnectGroupAuthority $ racfConnectGroupUACC $
racfSecurityLevel $ racfPassPhrase $ racfPassPhraseChangeDate $ racfHavePasswordEnvelope $
racfPassPhraseEnvelope $ racfHavePassPhraseEnvelope))

objectclasses=(1.3.18.0.2.6.59 NAME ('racfGroup') DESC 'Represents a RACF GROUP Profile entry'
STRUCTURAL SUP (racfBaseCommon) MUST (racfid) MAY (racfSuperiorGroup $ racfGroupNoTermUAC $
racfSubGroupName $ racfGroupUserids $ racfGroupUniversal))

objectclasses=(1.3.18.0.2.6.60 NAME ('SAFDfpSegment')
DESC 'Represents the SAF DFP portions of a RACF USER or GROUP profile' AUXILIARY SUP (top)
MAY (SAFDfpDataApplication $ SAFDfpDataClass $ SAFDfpManagementClass $ SAFDfpStorageClass))

objectclasses=(1.3.18.0.2.6.61 NAME ('racfGroupOmvsSegment')
DESC 'Represents the OS/390 OMVS Group information portion of a RACF GROUP profile' AUXILIARY
SUP (top) MAY (racfOmvsGroupId $ racfOmvsGroupIdKeyword))

objectclasses=(1.3.18.0.2.6.62 NAME ('racfGroupOvmSegment')
DESC 'Represents the OS/390 OVM Group information portion of a RACF GROUP profile' AUXILIARY
SUP (top) MAY (racfOvmGroupId))

objectclasses=(1.3.18.0.2.6.63 NAME ('racfUserOmvsSegment')
DESC 'Represents the OS/390 OMVS User information portion of a RACF USER profile' AUXILIARY SUP (top)
MAY (racfOmvsUid $ racfOmvsHome $ racfOmvsInitialProgram $ racfOmvsMaximumAddressSpaceSize $
racfOmvsMaximumCPUTime $ racfOmvsMaximumFilesPerProcess $ racfOmvsMaximumMemoryMapArea $
racfOmvsMaximumProcessesPerUID $ racfOmvsMaximumThreadsPerProcess $ racfOmvsMemoryLimit $
racfOmvsSharedMemoryMaximum $ racfOmvsUidKeyword))

objectclasses=(1.3.18.0.2.6.64 NAME ('racfUserOvmSegment')
DESC 'Represents the OS/390 OVM User information portion of a RACF USER profile' AUXILIARY SUP (top)
MAY (racfOvmUid $ racfOvmHome $ racfOvmInitialProgram $ racfOvmFileSystemRoot))

objectclasses=(1.3.18.0.2.6.65 NAME ('SAFTsoSegment')
DESC 'Represents the OS/390 TSO information in a RACF USER profile' AUXILIARY SUP (top)
MAY (SAFAccountNumber $ SAFDestination $ SAFHoldClass $ SAFJobClass $ SAFMessageClass $
SAFDefaultLoginProc $ SAFLogonSize $ SAFMaximumRegionSize $ SAFDefaultSysoutClass $ SAFUserdata $
SAFDefaultUnit $ SAFTsoSecurityLabel $ SAFDefaultCommand))

objectclasses=(1.3.18.0.2.6.66 NAME ('racfCicsSegment')
DESC 'Represents the OS/390 CICS information in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfOperatorClass $ racfOperatorIdentification $ racfOperatorPriority $ racfOperatorReSignon $
racfRslKey $ racfTerminalTimeout $ racfTslKey))

objectclasses=(1.3.18.0.2.6.67 NAME ('racfOperparmSegment')
DESC 'Represents the OS/390 Operator parameters in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfStorageKeyword $ racfAuthKeyword $ racfMformKeyword $ racfLevelKeyword $ racfMonitorKeyword $
racfRoutcodeKeyword $ racfLogCommandResponseKeyword $ racfMGIDKeyword $ racfDOMKeyword $
racfKEYKeyword $ racfCMDSYSKeyword $ racfUDKeyword $ racfMscopeSystems $ racfAltGroupKeyword $
racfAutoKeyword $ racfHcKeyword $ racfIntidsKeyword $ racfUnknidsKeyword))

objectclasses=(1.3.18.0.2.6.68 NAME ('racfLanguageSegment')
DESC 'Represents the OS/390 language information in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfPrimaryLanguage $ racfSecondaryLanguage))

objectclasses=(1.3.18.0.2.6.69 NAME ('racfWorkAttrSegment')
DESC 'Represents the OS/390 work attributes information in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfWorkAttrUsername $ racfBuilding $ racfDepartment $ racfRoom $ racfAddressLine1 $
racfAddressLine2 $ racfAddressLine3 $ racfAddressLine4 $ racfWorkAttrAccountNumber))

objectclasses=(1.3.18.0.2.6.70 NAME ('racfNetviewSegment')
DESC 'Represents the OS/390 Netview information in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfNetviewInitialCommand $ racfDefaultConsoleName $ racfCTLKeyword $ racfMSGRCVRKeyword $
racfNetviewOperatorClass $ racfDomains $ racfNGMFADMKeyword $ racfNGMFVSPNKeyword))

objectclasses=(1.3.18.0.2.6.71 NAME ('racfDCESegment')
DESC 'Represents the OS/390 DCE information in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfDCEAutoLogin $ racfDCEHomeCell $ racfDCEHomeCellUUID $ racfDCEPrincipal $ racfDCEUUID))

objectclasses=(1.3.18.0.2.6.72 NAME ('replicaObject')
DESC 'Represents information about a directory server replica' STRUCTURAL SUP (top)
MUST (cn $ replicaBindDN $ replicaHost $ replicaCredentials) MAY (description $ seeAlso $
replicaPort $ replicaBindMethod $ replicaUseSSL $ replicaUpdateTimeInterval))

objectclasses=(1.3.18.0.2.6.74 NAME ('aliasObject') DESC 'Defines an alias for a directory entry'
AUXILIARY SUP (top) MUST (aliasedObjectName))

objectclasses=(1.3.18.0.2.6.75 NAME ('accessGroup') DESC 'Group used for access control' STRUCTURAL
SUP (top) MUST (cn) MAY (member $ businessCategory $ seeAlso $ owner $ ou $ o $ description))

objectclasses=(1.3.18.0.2.6.76 NAME ('accessRole') DESC 'Role used for access control' STRUCTURAL
SUP (top) MUST (cn) MAY (member $ businessCategory $ seeAlso $ owner $ ou $ o $ description))

objectclasses=(1.3.18.0.2.6.174 NAME ('ibmSubschema') AUXILIARY SUP (subschema)
MAY (ibmAttributeTypes))

objectclasses=(1.3.18.0.2.6.241 NAME ('ibm-securityIdentities')
DESC 'Defines the security identities of a user' AUXILIARY SUP (top)
MAY (altSecurityIdentities $ userPrincipalName))

objectclasses=(1.3.18.0.2.6.248 NAME ('racfLNotesSegment')
DESC 'Represents the OS/390 LNOTES segment information in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfLNotesShortName))

objectclasses=(1.3.18.0.2.6.249 NAME ('racfNDSSegment')
DESC 'Represents the OS/390 NDS segment information in a RACF USER profile' AUXILIARY SUP (top)
MAY (racfNDSUserName))

objectclasses=(1.3.18.0.2.6.259 NAME ('racfConnect') DESC 'RACF Connect' STRUCTURAL SUP (top)
MUST (racfGroupId $ racfUserid) MAY (racfConnectAttributes $ racfConnectAuthDate $
racfConnectCount $ racfConnectGroupAuthority $ racfConnectGroupUACC $ racfConnectLastConnect $
racfConnectOwner $ racfConnectResumeDate $ racfConnectRevokeDate))

objectclasses=(1.3.18.0.2.6.260 NAME ('racfKerberosInfo') DESC 'Kerberos information for RACF'
AUXILIARY SUP (top) MAY (krbPrincipalName $ maxTicketAge $ racfCurKeyVersion $ racfEncryptType $
racfKerbKeyFrom))

objectclasses=(1.3.18.0.2.6.261 NAME ('krbAlias') DESC 'Kerberos aliases' AUXILIARY SUP (top)
MAY (krbAliasedObjectName $ krbHintAliases))

objectclasses=(1.3.18.0.2.6.262 NAME ('ibm-changeLog')
DESC 'IBM extension to changeLogEntry object class' AUXILIARY SUP (top)
MAY (ibm-changeInitiatorsName))

objectclasses=(1.3.18.0.2.6.263 NAME ('krbRealm-V2') DESC 'Represents a Kerberos realm' STRUCTURAL
SUP (top) MUST (krbPrincSubtree $ krbRealmName-V2))

objectclasses=(1.3.18.0.2.6.264 NAME ('ibm-nativeAuthentication')
DESC 'Use native security manager for authentication' AUXILIARY SUP (top) MUST (ibm-nativeId))

objectclasses=(1.3.18.0.2.6.267 NAME ('racfProxySegment') DESC 'RACF Proxy segment' AUXILIARY
SUP (top) MAY (racfLDAPBindDN $ racfLDAPBindPw $ racfLDAPHost))

objectclasses=(1.3.18.0.2.6.447 NAME ('racfEIMSegment') DESC 'RACF EIM segment' AUXILIARY SUP (top)
MAY (racfLDAPProf))

objectclasses=(1.3.18.0.2.6.448 NAME ('ibm-nestedGroup')
DESC 'Allow subgroups to be nested within parent group' AUXILIARY SUP (top) MAY (ibm-memberGroup))

objectclasses=(1.3.18.0.2.6.449 NAME ('ibm-dynamicGroup')
DESC 'Used to create a hybrid group with both static and dynamic members' AUXILIARY SUP (top)
MAY (memberURL))

objectclasses=(1.3.18.0.2.6.451 NAME ('ibm-staticGroup')
DESC 'Used to create a hybrid group with both static and dynamic members' AUXILIARY SUP (top)
MAY (member))

objectclasses=(1.3.6.1.4.1.1466.101.120.111 NAME ('extensibleObject')

Initial LDAP server schema

Appendix A. Initial LDAP server schema 217

DESC 'Permits the entry to hold any attribute type defined in the schema' AUXILIARY SUP (top))
objectclasses=(2.5.6.0 NAME ('top') ABSTRACT MUST (objectClass))
objectclasses=(2.5.6.1 NAME ('alias') DESC 'Defines an alias for a directory entry' STRUCTURAL
SUP (top) MUST (aliasedObjectName))

objectclasses=(2.5.6.9 NAME ('groupOfNames') DESC 'Defines entries for a group of names' STRUCTURAL
SUP (top) MUST (cn $ member) MAY (businessCategory $ seeAlso $ owner $ ou $ o $ description))

objectclasses=(2.5.6.17 NAME ('groupOfUniqueNames') DESC 'Defines entries for a group of unique names'
STRUCTURAL SUP (top) MUST (cn $ uniqueMember)
MAY (businessCategory $ seeAlso $ owner $ ou $ o $ description))

objectclasses=(2.5.17.0 NAME ('subentry') STRUCTURAL SUP (top) MUST (cn $ subtreeSpecification))
objectclasses=(2.5.20.1 NAME ('subschema') AUXILIARY SUP (top) MAY (ditStructureRules $ nameForms $
ditContentRules $ objectClasses $ attributeTypes $ matchingRules $ matchingRuleUse $ ldapSyntaxes))

objectclasses=(2.16.840.1.113730.3.2.1 NAME ('changeLogEntry')
DESC 'Used to represent changes made to a directory server' STRUCTURAL SUP (top)
MUST (targetDN $ changeTime $ changeNumber $ changeType)
MAY (modifiersName $ changes $ newRdn $ deleteOldRdn $ newSuperior))

objectclasses=(2.16.840.1.113730.3.2.6 NAME ('referral')
DESC 'Defines a pointer to another server' STRUCTURAL SUP (top) MUST (ref))

objectclasses=(2.16.840.1.113730.3.2.33 NAME ('groupOfURLs') DESC 'Represents a group of URLs'
STRUCTURAL SUP (top) MUST (cn)
MAY (memberURL $ businessCategory $ description $ o $ ou $ owner $ seeAlso))

Initial LDAP server schema

218 z/VM: TCP/IP LDAP Administration Guide

Appendix B. Supported server controls

The sections that follow describe the supported server controls. For information on
ASN.1 (Abstract Syntax Notation One) and BER (Basic Encoding Rules), go to the
following Web site:
ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

authenticateOnly
v Name: authenticateOnly

v Description: Used on an LDAP bind operation to indicate to the LDAP server
that it should not attempt to find any group membership information for the
client’s bind DN.

v Assigned object identifier: 1.3.18.0.2.10.2

v Target of control: Server

v Control criticality: Critical at client’s option

v Values: There is no value; the controlValue field is absent.

v Detailed description: This control is valid when sent on an LDAP client’s bind
request to the LDAP server. The presence of this control on the bind request
overrides alternate DN look-ups, extended group searching, and default group
membership gathering, and causes the LDAP server to only authenticate the
client’s bind DN and not gather group information at all. This control is intended
for a client who does not care about group memberships and subsequent
complete authorization checking using groups, but is using the bind only for
authentication to the LDAP server and fast bind processing.

IBMModifyDNRealignDNAttributesControl
v Name: IBMModifyDNRealignDNAttributesControl

v Description: Used by a client to request that a Modify DN operation be extended
to realign attribute values for attributes with Distinguished Name syntax, and
other specified attribute types known to contain distinguished names, with the
new DN values established by the Modify DN operation for those DNs.

v Assigned object identifier: 1.3.18.0.2.10.11

v Target of control: Server

v Control criticality: Critical at client’s option

v Values: There is no value; the controlValue field is absent.

v Detailed description: This control is valid when sent on a client’s Modify DN
request. Distinguished names which are renamed may be embedded in
DN-syntax attributes throughout the directory contents. It may be desirable to
replace the embedded values with their renamed counterparts (realignment). The
presence of this control on the Modify DN request causes the server to realign
matching attribute values in all attribute types whose syntax is Distinguished
Name (OID 1.3.6.1.4.1.1466.115.121.1.12), as well as in the attribute types of
aclEntry and entryOwner, which are known to contain distinguished names. The
server will evaluate whether the bound user has permission to modify the
candidate attribute values, as determined by the appropriate access controls and
the permissions granted by those access controls to the bound DN. If the
permissions granted to the bound DN are sufficient to modify the candidate
attribute values, those values will be realigned to match their respective new DN
values. If any single access check fails, the entire Modify DN operation fails, and
all changes to the directory associated with the current Modify DN operation are

© Copyright IBM Corp. 2007, 2009 219

ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

undone. The scope for realignment is the backend containing the base DN for
the Modify DN request. DN references in other backends or other LDAP servers
will not be updated.

IBMModifyDNTimelimitControl
v Name: IBMModifyDNTimelimitControl

v Description: Used by a client to request that a Modify DN operation be
abandoned if the specified time limit for that operation has been exceeded.

v Assigned object identifier: 1.3.18.0.2.10.10

v Target of control: Server

v Control criticality: Critical at client’s option

v Values: The following ANSI.1 (Abstract Syntax Notation One) syntax describes
the BER (Basic Encoding Rules) encoding of the control value.
ControlValue ::= SEQUENCE {
Time Limit INTEGER
}

v Detailed description: This control is valid when sent on a client’s Modify DN
request. Modify DN operations may be long-running operations if they affect
many entries in the directory (for example, if they rename an entry with a subtree
containing many subordinate entries), so it may be desirable to limit the duration
of the operation. The presence of this control on the Modify DN request causes
the operation to be abandoned by the server if the number of seconds specified
in the control value is exceeded. When the operation is abandoned, all changes
to the directory associated with the Modify DN operation are undone. A time limit
of zero will cause the control to be ignored. The last time limit value will be used
if this control is specified more than once.

IBMSchemaReplaceByValueControl
v Name: IBMSchemaReplaceByValueControl

v Description: Used on a schema modify request to tell the LDAP server that a
replace operation will either replace all schema values or just matching values.

v Assigned object identifier: 1.3.18.0.2.10.20

v Target of control: Server

v Control criticality: Critical at client’s option

v Values: The following ASN.1 (Abstract Syntax Notation One) statements describe
the BER (Basic Encoding Rules) for encoding the control value using implicit
tagging:
ControlValue ::= SEQUENCE {
replaceByValue BOOLEAN
}

v Detailed description: This control is valid when sent on a client’s modify request
and has meaning only when performing a modify replace operation of an attribute
in the LDAP server schema. If the control value is set to TRUE, then each
replace value in the modify operation either replaces the existing value (if there is
one with the same object identifier) or is added to the schema (if there is no
existing value with the same object identifier). All other values in the schema
remain as they are. If the control is set to FALSE, all the values for that attribute
in the schema are replaced by the ones specified in the modify operation. See
Updating the schema for more information on how LDAP processes a schema
modify with replace operation. In all cases, the values of the attributes that are in

220 z/VM: TCP/IP LDAP Administration Guide

the initial LDAP server schema cannot be deleted and can be modified only in
very limited ways. See Updating the schema for more information.

IBMschemaReplaceByValueControl overrides the schemaReplaceByValue
server configuration option for the current modify request. The last value will be
used if this control is specified more than once.

manageDsaIT
v Name: manageDsaIT

v Description: Used on a request to suppress referral processing, thereby allowing
the client to manipulate referral objects.

v Assigned object identifier: 2.16.840.1.113730.3.4.2

v Target of control: Server

v Control criticality: Critical

v Values: There is no value; the controlValue field is absent.

v Detailed description: This control is valid when sent on a client’s search,
compare, add, delete, modify, or modify DN request. The presence of the control
indicates that the server should not return referrals or search continuation
references to the client. This allows the client to read or modify referral objects.
The LDAP server will not return a referral even if the requested object is not
included in any suffix within the LDAP server and a global referral is defined
using the referral option in the LDAP server configuration file.

PersistentSearch
v Name: PersistentSearch

v Description: Used on a search request to request not only the current contents
of the directory that match the search request but also any entries that match the
search specification in the future.

v Assigned object identifier: 2.16.840.1.113730.3.4.3

v Target of control: Server

v Control criticality: Critical at client’s option

v Values: The following ASN.1 (Abstract Syntax Notation One) syntax describes
the BER (Basic Encoding Rules) encoding of the control value.
ControlValue ::= SEQUENCE {
changeTypes INTEGER,
changesOnly BOOLEAN,
returnECs BOOLEAN
}

EntryChangeNotification ::= SEQUENCE {
changeType ENUMERATED {

add (1),
delete (2),
modify (4),
moddn (8) },

previousDN LDAPDN OPTIONAL,
changeNumber INTEGER OPTIONAL
}

Where,

– changeTypes ::= A bit field that specifies one or more types of changes the
client is interested in: 0x01 for add changes, 0x02 for delete changes, 0x04
for modify changes, and 0x08 for modify DN changes.

Appendix B. Supported server controls 221

– changesOnly ::= A flag that, if TRUE, only changed entries that match the
search are returned. If set to FALSE, existing entries matching the search are
returned, in addition to changed entries that match the search.

– returnECs ::= A flag that, if TRUE, an entryChangeNotification control is
included when returning a changed entry that matches the search. If set to
FALSE, the control is not included.

– changeType ::= Indicates the type of change made to the entry.

– previousDN ::= For a moddn changeType, the DN of the entry before it was
renamed.

– changeNumber ::= The changeNumber of the change log entry, if any, that was
created for this change.

v Detailed description: The control is valid when sent on a client’s search
request. Support is provided in the client to create this control and parse the
resultant entries. See ldap_create_persistentsearch_control() for more
information.

A persistent search consists of two phases. The first phase is optional (it is done
if changesOnly is FALSE), and consists of searching the directory for entries
matching the search specification. The second phase consists of executing the
search specification against any modifications that occur in the directory and, if
found matching, then sending the search results to the waiting client.

Persistent search is supported in the LDBM, and GDBM backends. In addition,
the schema entry (cn=schema) and the rootDSE (zero-length DN) support
persistent searches. The persistentSearch configuration option can be used in
the backend section of the configuration file to enable or disable persistent
search for that backend. See “Configuring the LDAP Server” in z/VM: TCP/IP
Planning and Customization for more information on the persistentSearch
configuration option.

v Server behavior: The server behaves as described in the specification found at
http://www.mozilla.org/directory/ietf-docs/draft-smith-psearch-ldap-01.txt, with the
following exceptions:

1. An error is returned if an error occurs during processing of the persistent
search request. Section 4.b of the specification indicates that
SearchResultsDone message is not returned if a persistent search is
requested. This is not recognized in the case of an error.

2. If more than one PersistentSearchControl is received per search request,
LDAP_PROTOCOL_ERROR is returned.

3. If the requesting client is not bound as adminDN,
LDAP_UNWILLING_TO_PERFORM is returned.

4. If persistent search is requested and the dereference option was set to
something other than LDAP_DEREF_NEVER or LDAP_DEREF_FINDING,
LDAP_PROTOCOL_ERROR is returned. If LDAP_DEREF_FINDING is
specified, alias dereferencing is performed when the persistent search is
issued to determine the real base entry. The dereferenced base entry is
then used to determine if modified entries are within the scope of the
persistent search request.

5. If a persistent search request is specified for a suffix that does not exist in
the LDAP server configuration file, LDAP_NO_SUCH_OBJECT is returned.

6. If a persistent search request is specified for a suffix that is configured but
for a search base that does not exist, no search results are returned until
the object is added.

222 z/VM: TCP/IP LDAP Administration Guide

http://www.mozilla.org/directory/ietf-docs/draft-smith-psearch-ldap-01.txt

7. The search filter and scope are matched before a delete is done, all other
operations are matched afterwards. No search results are returned for
entries moved out of the search filter or scope due to modification or
rename.

8. For a persistent search of the root DSE, the search scope must be
LDAP_SCOPE_SUBTREE. Backends that do not support persistent search
or do not have persistent search enabled will be skipped if a null-based
subtree search is used and the persistent search control is marked as
critical, otherwise a normal search will be performed for those backends.

9. If a PersistentSearch control is included in a search request for an LDBM,
or GDBM backend that has not enabled persistent search, the search
request is rejected with LDAP_UNAVAILABLE_CRITICAL_EXTENTION
(0x35) if the control is critical. If the control is not critical, a ’normal’ search
is performed (even if changesOnly is TRUE).

10. Change log entries trimmed by the LDAP server due to the
changeLogMaxAge or changeLogMaxEntries configuration options are
not returned to a persistent search of the change log directory.

11. If the manageDsaIT control is not specified with the PersistentSearch
control and phase one of the search finds a referral, the referral is returned
to the client. If the base of the search is equal to or below a referral, the
referral is returned and the persistent search second phase does not occur.
During the second phase of persistent search, referral entries are always
processed like normal entries, even if the manageDsaIT control is not
specified on the persistent search.

12. Idle connection time out also affects persistent search connections. See the
description of the idleConnectionTimeout configuration option in “Step 7.
Create and Customize the LDAP Configuration File (DS CONF)” in z/VM:
TCP/IP Planning and Customization for more information.

13. sizeLimit and timeLimit parameters and configuration options are
respected only during the first phase of persistent search, when existing
entries are searched. An error is returned if either limit is exceeded and the
persistent search ends. During the second phase, when changed entries are
searched, sizeLimit and timeLimit are ignored.

14. Only the entry specified in a modify DN request (the target of the rename
operation) can be returned during the second phase of the persistent
search. Subentries or entries modified as part of the realignment process
are not returned.

15. The SDBM backend does not support persistent search. To be notified of
changes to a RACF user (including password changes), group, or
user-group connection, request a persistent search of the change log
directory. If configured, RACF creates a change log entry when a
modification is made to a RACF user, group, or connection profile.

16. Operational attributes are returned on persistent searches except the
following: aclSource, ownerSource, ibm-allGroups, and ibm-allMembers.
The aclEntry, aclPropagate, entryOwner and ownerPropagate attributes
are returned only if they are defined for the entry and are not inherited from
a superior entry.

replicateOperationalAttributes
v Name: replicateOperationalAttributes

Appendix B. Supported server controls 223

v Description: Used to pass the values of operational attributes that are normally
set by the server during an add, modify, or modify DN operation.

v Assigned object identifier: 1.3.18.0.2.10.19

v Target of control: Server

v Control criticality: Critical at client’s option

v Values: The values in this control identify the operational attributes and values to
be set. The following ASN.1 (Abstract Syntax Notation One) syntax describes the
BER (Basic Encoding Rules) encoding of the control value.
ControlValue ::= SEQUENCE OF SEQUENCE {

operation ENUMERATED {
add (0),
delete (1),
replace (2) },

modification AttributeTypeAndValues }
}

AttributeTypeAndValues ::= SEQUENCE {
type OCTET STRING,
vals SET OF OCTET STRING }

}

where:

– operation ::= Indicates whether the operational attribute value should be
added to the entry, should be deleted from the entry, or should replace the
current value in the entry.

– type ::= Specifies the name of the operational attribute.

– vals ::= Specifies the values of the operational attribute.

v Detailed description: This control is intended to be used to pass values to the
server for operational attributes that are normally set by the server, not by the
client. For example, a master server might use this control to pass the
modifiersName and modifyTimestamp values on a replication request so that
the entry on the replica will have the same values as on the master.

v Server behavior:

1. The control is only supported on an add, modify, or modify DN request on a
peer or read-only replica server. If the control is specified on another request
and the control is critical, the server returns
LDAP_UNAVAILABLE_CRITICAL_EXTENSION.

2. The requestor must be bound as the master server DN or peer server DN for
the backend processing the request, as specified by the masterServerDN or
peerServerDN option in the backend section of the LDAP server
configuration file. If the requestor is not bound in this way and the control is
critical, the server returns LDAP_UNAVAILABLE_CRITICAL_EXTENSION.

3. Each attribute type specified in the control must be defined in the LDAP
server schema. If it is not, the server returns LDAP_UNDEFINED_TYPE if
the control is crtitical, otherwise it ignores the attribute.

4. There is no ACL checking performed for the changes to the entry resulting
from the control. The server does perform schema checking to assure the
attributes are allowed in the entry.

5. If more than one replicateOperationalAttributes control is specified in a
request, the server returns LDAP_PROTOCOL_ERROR.

224 z/VM: TCP/IP LDAP Administration Guide

Appendix C. Related Protocol Specifications

IBM is committed to industry standards. The internet protocol suite is still evolving
through Requests for Comments (RFC). New protocols are being designed and
implemented by researchers, and are brought to the attention of the internet
community in the form of RFCs. Some of these are so useful that they become a
recommended protocol. That is, all future implementations for TCP/IP are
recommended to implement this particular function or protocol. These become the
de facto standards, on which the TCP/IP protocol suite is built.

Many features of TCP/IP for z/VM are based on the following RFCs:

RFC Title Author

768 User Datagram Protocol J.B. Postel

791 Internet Protocol J.B. Postel

792 Internet Control Message Protocol J.B. Postel

793 Transmission Control Protocol J.B. Postel

821 Simple Mail Transfer Protocol J.B. Postel

822 Standard for the Format of ARPA Internet Text Messages D. Crocker

823 DARPA Internet Gateway R.M. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol: or Converting Network Protocol
Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware

D.C. Plummer

854 Telnet Protocol Specification J.B. Postel, J.K. Reynolds

856 Telnet Binary Transmission J.B. Postel, J.K. Reynolds

857 Telnet Echo Option J.B. Postel, J.K. Reynolds

877 Standard for the Transmission of IP Datagrams over Public Data Networks J.T. Korb

885 Telnet End of Record Option J.B. Postel

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J.C.
Mogul, M. Theimer

904 Exterior Gateway Protocol Formal Specification D.L. Mills

919 Broadcasting Internet Datagrams J.C. Mogul

922 Broadcasting Internet Datagrams in the Presence of Subnets J.C. Mogul

950 Internet Standard Subnetting Procedure J.C. Mogul, J.B. Postel

952 DoD Internet Host Table Specification K. Harrenstien, M.K. Stahl,
E.J. Feinler

959 File Transfer Protocol J.B. Postel, J.K. Reynolds

974 Mail Routing and the Domain Name System C. Partridge

1009 Requirements for Internet Gateways R.T. Braden, J.B. Postel

1013 X Window System Protocol, Version 11: Alpha Update R.W. Scheifler

1014 XDR: External Data Representation Standard Sun™ Microsystems
Incorporated

1027 Using ARP to Implement Transparent Subnet Gateways S. Carl-Mitchell, J.S.
Quarterman

1032 Domain Administrators Guide M.K. Stahl

1033 Domain Administrators Operations Guide M. Lottor

© Copyright IBM Corp. 2007, 2009 225

RFC Title Author

1034 Domain Names—Concepts and Facilities P.V. Mockapetris

1035 Domain Names—Implementation and Specification P.V. Mockapetris

1042 Standard for the Transmission of IP Datagrams over IEEE 802 Networks J.B. Postel, J.K. Reynolds

1044 Internet Protocol on Network System’s HYPERchannel: Protocol
Specification

K. Hardwick, J.
Lekashman

1055 Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP J.L. Romkey

1057 RPC: Remote Procedure Call Protocol Version 2 Specification Sun Microsystems
Incorporated

1058 Routing Information Protocol C.L. Hedrick

1091 Telnet Terminal-Type Option J. VanBokkelen

1094 NFS: Network File System Protocol Specification Sun Microsystems
Incorporated

1112 Host Extensions for IP Multicasting S. Deering

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts-Communication Layers R.T. Braden

1123 Requirements for Internet Hosts-Application and Support R.T. Braden

1155 Structure and Identification of Management Information for TCP/IP-Based
Internets

M.T. Rose, K. McCloghrie

1156 Management Information Base for Network Management of TCP/IP-based
Internets

K. McCloghrie, M.T. Rose

1157 Simple Network Management Protocol (SNMP), J.D. Case, M. Fedor, M.L.
Schoffstall, C. Davin

1179 Line Printer Daemon Protocol The Wollongong Group, L.
McLaughlin III

1180 TCP/IP Tutorial, T. J. Socolofsky, C.J. Kale

1183 New DNS RR Definitions (Updates RFC 1034, RFC 1035) C.F. Everhart, L.A.
Mamakos, R. Ullmann, P.V.
Mockapetris,

1187 Bulk Table Retrieval with the SNMP M.T. Rose, K. McCloghrie,
J.R. Davin

1198 FYI on the X Window System R.W. Scheifler

1207 FYI on Questions and Answers: Answers to Commonly Asked Experienced
Internet User Questions

G.S. Malkin, A.N. Marine,
J.K. Reynolds

1208 Glossary of Networking Terms O.J. Jacobsen, D.C. Lynch

1213 Management Information Base for Network Management of TCP/IP-Based
Internets: MIB-II,

K. McCloghrie, M.T. Rose

1215 Convention for Defining Traps for Use with the SNMP M.T. Rose

1228 SNMP-DPI Simple Network Management Protocol Distributed Program
Interface

G.C. Carpenter, B. Wijnen

1229 Extensions to the Generic-Interface MIB K. McCloghrie

1267 A Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol (Version
3)

S. Willis, J. Burruss

1293 Inverse Address Resolution Protocol T. Bradley, C. Brown

RFCs

226 z/VM: TCP/IP LDAP Administration Guide

RFC Title Author

1270 SNMP Communications Services F. Kastenholz, ed.

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D.
Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked New Internet
User Questions

G.S. Malkin, A.N. Marine

1351 SNMP Administrative Model J. Davin, J. Galvin, K.
McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie,
J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K. McCloghrie, J. Davin, J.
Galvin

1354 IP Forwarding Table MIB F. Baker

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1387 RIP Version 2 Protocol Analysis G. Malkin

1389 RIP Version 2 MIB Extension G. Malkin

1393 Traceroute Using an IP Option G. Malkin

1397 Default Route Advertisement In BGP2 And BGP3 Versions of the Border
Gateway Protocol

D. Haskin

1398 Definitions of Managed Objects for the Ethernet-like Interface Types F. Kastenholz

1440 SIFT/UFT:Sender-Initiated/Unsolicited File Transfer R. Troth

1493 Definition of Managed Objects for Bridges E. Decker, P. Langille, A.
Rijsinghani, K. McCloghrie

1540 IAB Official Protocol Standards J.B. Postel

1583 OSPF Version 2 J.Moy

1647 TN3270 Enhancements B. Kelly

1700 Assigned Numbers J.K. Reynolds, J.B. Postel

1723 RIP Version 2 — Carrying Additional Information G. Malkin

1738 Uniform Resource Locators (URL) T. Berners-Lee, L.
Masinter, M. McCahill

1813 NFS Version 3 Protocol Specification B. Callaghan, B.
Pawlowski, P. Stauback,
Sun Microsystems
Incorporated

1823 The LDAP Application Program Interface T. Howes, M. Smith

2060 IMAP Version 4 Protocol Specification M. Crispin

2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

2052 A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen, P. Vixie

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare,
R. Canetti

2195 IMAP/POP AUTHorize Extension for Simple Challenge/Response J. Klensin, R. Catoe, P.
Krumviede

2222 Simple Authentication and Security Layer (SASL) J. Myers

2247 Using Domains in LDAP/X.500 Distinguished Names S. Kille, M. Wahl, A.
Grimstad, R. Huber, S.
Sataluri

RFCs

Appendix C. Related Protocol Specifications 227

RFC Title Author

2251 Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

2252 Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions M. Wahl, A. Coulbeck, T.
Howes, S. Kille

2253 Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names

M. Wahl, S. Kille, T. Howes

2254 The String Representation of LDAP Search Filters T. Howes

2255 The LDAP URL Format T. Howes, M. Smith

2256 A Summary of the X.500 (96) User Schema for use with LDAPv3 M. Wahl

2279 UTF-8, a transformation format of ISO 10646 F. Yergeau

2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.
Simpson

2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification

A. Conta, S. Deering

2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.
Haberman

2713 Schema for Representing Java(tm) Objects in an LDAP Directory V. Ryan, S. Seligman, R.
Lee

2714 Schema for Representing CORBA Object References in an LDAP Directory V. Ryan, R. Lee, S.
Seligman

2732 Format for Literal IPv6 Addresses in URLs R. Hinden, B. Carpenter, L.
Masinter

2743 Generic Security Service Application Program Interface Version 2, Update
1

J. Linn

2744 Generic Security Service API Version 2 : C-bindings J. Wray

2820 Access Control Requirements for LDAP E. Stokes, D. Byrne, B.
Blakley, P. Behera

2829 Authentication Methods for LDAP M. Wahl, H. Alvestrand, J.
Hodges, R. Morgan

2830 Lightweight Directory Access Protocol (v3): Extension for Transport Layer
Security

J. Hodges, R. Morgan, M.
Wahl

2831 Using Digest Authentication as a SASL Mechanism P. Leach, C. Newman

2849 The LDAP Data Interchange Format (LDIF) G. Good

2873 TCP Processing of the IPv4 Precedence Field X. Xiao, A. Hannan, V.
Paxson, E. Crabble

3377 Lightweight Directory Access Protocol (v3): Technical Specification J. Hodges, R. Morgan

3484 Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S. Deering

These documents can be obtained from:

Government Systems, Inc.
Attn: Network Information Center

RFCs

228 z/VM: TCP/IP LDAP Administration Guide

14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hard copies of all RFCs are available from the
NIC, either individually or on a subscription basis. Online copies are available using
FTP from the NIC at nic.ddn.mil. Use FTP to download the files, using the
following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Where:
nnnn Is the RFC number.
TXT Is the text format.
PS Is the PostScript® format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil. Information is also available
through http://www.ietf.org/.

RFCs

Appendix C. Related Protocol Specifications 229

230 z/VM: TCP/IP LDAP Administration Guide

Appendix D. Abbreviations and Acronyms

The following abbreviations and acronyms are used throughout this book.

AIX Advanced Interactive Executive
ANSI American National Standards Institute
API Application Program Interface
APPC Advanced Program-to-Program Communications
APPN® Advanced Peer-to-Peer Networking®

ARP Address Resolution Protocol
ASCII American National Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation One
AUI Attachment Unit Interface
BFS Byte File System
BIOS Basic Input/Output System
BNC Bayonet Neill-Concelman
CCITT Comite Consultatif International Telegraphique et Telephonique. The

International Telegraph and Telephone Consultative Committee
CLAW Common Link Access to Workstation
CLIST Command List
CMS Conversational Monitor System
CP Control Program
CPI Common Programming Interface
CREN Corporation for Research and Education Networking
CSD Corrective Service Diskette
CTC Channel-to-Channel
CU Control Unit
CUA® Common User Access®

DASD Direct Access Storage Device
DBCS Double Byte Character Set
DLL Dynamic Link Library
DNS Domain Name System
DOS Disk Operating System
DPI® Distributed Program Interface
EBCDIC Extended Binary-Coded Decimal Interchange Code
EISA Enhanced Industry Standard Adapter
ESCON® Enterprise Systems Connection Architecture
FAT File Allocation Table
FTAM File Transfer Access Management
FTP File Transfer Protocol
FTP API File Transfer Protocol Applications Programming Interface
GCS Group Control System
GDDM® Graphical Data Display Manager
GDDMXD Graphics Data Display Manager Interface for X Window System
GDF Graphics Data File
HCH HYPERchannel device
HIPPI High Performance Parallel Interface
HPFS High Performance File System
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronic Engineers
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IP Internet Protocol

© Copyright IBM Corp. 2007, 2009 231

IPL Initial Program Load
ISA Industry Standard Adapter
ISDN Integrated Services Digital Network
ISO International Organization for Standardization
IUCV Inter-User Communication Vehicle
JES Job Entry Subsystem
JIS Japanese Institute of Standards
JCL Job Control Language
LAN Local Area Network
LAPS LAN Adapter Protocol Support
LCS IBM LAN Channel Station
LDAP Lightweight Directory Access Protocol
LPD Line Printer Daemon
LPQ Line Printer Query
LPR Line Printer Client
LPRM Line Printer Remove
LPRMON Line Printer Monitor
LU Logical Unit
MAC Media Access Control
Mbps Megabits per second
MBps Megabytes per second
MCA Micro Channel® Adapter
MIB Management Information Base
MIH Missing Interrupt Handler
MILNET Military Network
MHS Message Handling System
MTU Maximum Transmission Unit
MVS Multiple Virtual Storage
MX Mail Exchange
NCP Network Control Program
NDIS Network Driver Interface Specification
NFS Network File System
NIC Network Information Center
NLS National Language Support
NSFNET National Science Foundation Network
OS/2® Operating System/2®

OSA Open Systems Adapter
OSF Open Software Foundation, Inc.
OSI Open Systems Interconnection
OSIMF/6000 Open Systems Interconnection Messaging and Filing/6000
OV/MVS OfficeVision/MVS
OV/VM OfficeVision/VM
PAD Packet Assembly/Disassembly
PC Personal Computer
PCA Parallel Channel Adapter
PDN Public Data Network
PDU Protocol Data Units
PING Packet Internet Groper
PIOAM Parallel I/O Access Method
POP Post Office Protocol
PROFS™ Professional Office Systems
PSCA Personal System Channel Attach
PSDN Packet Switching Data Network
PU Physical Unit
PVM Passthrough Virtual Machine

Abbreviations and Acronyms

232 z/VM: TCP/IP LDAP Administration Guide

RACF Resource Access Control Facility
RARP Reverse Address Resolution Protocol
REXEC Remote Execution
REXX Restructured Extended Executor Language
RFC Request For Comments
RIP Routing Information Protocol
RISC Reduced Instruction Set Computer
RPC Remote Procedure Call
RSCS Remote Spooling Communications Subsystem
SAA Systems Application Architecture®

SBCS Single Byte Character Set
SFS Shared File System
SLIP Serial Line Internet Protocol
SMIL Structure for Management Information
SMTP Simple Mail Transfer Protocol
SNA Systems Network Architecture
SNMP Simple Network Management Protocol
SOA Start of Authority
SPOOL Simultaneous Peripheral Operations Online
SQL IBM Structured Query Language
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TSO Time Sharing Option
TTL Time-to-Live
UDP User Datagram Protocol
VGA Video Graphic Array
VM Virtual Machine
VMCF Virtual Machine Communication Facility
VM/ESA® Virtual Machine/Enterprise System Architecture
VMSES/E Virtual Machine Serviceability Enhancements Staged/Extended
VTAM® Virtual Telecommunications Access Method
WAN Wide Area Network
XDR eXternal Data Representation

Abbreviations and Acronyms

Appendix D. Abbreviations and Acronyms 233

Abbreviations and Acronyms

234 z/VM: TCP/IP LDAP Administration Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in all
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, New York 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2007, 2009 235

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, New York 12601-5400
U.S.A.
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as
Programming Interfaces of z/VM.

236 z/VM: TCP/IP LDAP Administration Guide

This book also documents intended Programming Interfaces that allow the customer
to write programs to obtain services of z/VM. This information is identified where it
occurs, either by an introductory statement to a chapter or section or by the
following marking:

�PI�

<....Programming Interface information....>

�PI end�

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Adobe and PostScript are either registered trademarks or trademarks of Adobe®

Systems Incorporated in the United States, and/or other countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Windows is a trademark of Microsoft® Corporation in the United States, other
countries, or both.

Notices 237

http://www.ibm.com/legal/copytrade.shtml

238 z/VM: TCP/IP LDAP Administration Guide

Glossary

For a list of z/VM terms and their definitions, see z/VM: Glossary.

The z/VM glossary is also available through the online z/VM HELP Facility. For
example, to display the definition of the term “dedicated device”, issue the following
HELP command:
help glossary dedicated device

While you are in the glossary help file, you can do additional searches:

v To display the definition of a new term, type a new HELP command on the
command line:
help glossary newterm

This command opens a new help file inside the previous help file. You can repeat
this process many times. The status area in the lower right corner of the screen
shows how many help files you have open. To close the current file, press the
Quit key (PF3/F3). To exit from the HELP Facility, press the Return key (PF4/F4).

v To search for a word, phrase, or character string, type it on the command line
and press the Clocate key (PF5/F5). To find other occurrences, press the key
multiple times.

The Clocate function searches from the current location to the end of the file. It
does not wrap. To search the whole file, press the Top key (PF2/F2) to go to the
top of the file before using Clocate.

© Copyright IBM Corp. 2007, 2009 239

240 z/VM: TCP/IP LDAP Administration Guide

Bibliography

See the following publications for additional
information about z/VM. For abstracts of the z/VM
publications, see z/VM: General Information.

Where to Get z/VM Information
z/VM product information is available from the
following sources:

v z/VM Information Center at
publib.boulder.ibm.com/infocenter/zvm/v6r1/
index.jsp

v z/VM Internet Library at www.ibm.com/eserver/
zseries/zvm/library/

v IBM Publications Center at
www.elink.ibmlink.ibm.com/publications/servlet/
pbi.wss

v IBM Online Library: z/VM Collection on DVD,
SK5T-7054

z/VM Base Library

Overview
v z/VM: General Information, GC24-6193

v z/VM: Glossary, GC24-6195

v z/VM: License Information, GC24-6200

Installation, Migration, and
Service
v z/VM: Guide for Automated Installation and

Service, GC24-6197

v z/VM: Migration Guide, GC24-6201

v z/VM: Service Guide, GC24-6232

v z/VM: VMSES/E Introduction and Reference,
GC24-6243

Planning and Administration
v z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-6167

v z/VM: CMS Planning and Administration,
SC24-6171

v z/VM: Connectivity, SC24-6174

v z/VM: CP Planning and Administration,
SC24-6178

v z/VM: Getting Started with Linux on System z,
SC24-6194

v z/VM: Group Control System, SC24-6196

v z/VM: I/O Configuration, SC24-6198

v z/VM: Running Guest Operating Systems,
SC24-6228

v z/VM: Saved Segments Planning and
Administration, SC24-6229

v z/VM: Secure Configuration Guide, SC24-6230

v z/VM: TCP/IP LDAP Administration Guide,
SC24-6236

v z/VM: TCP/IP Planning and Customization,
SC24-6238

v z/OS and z/VM: Hardware Configuration
Manager User’s Guide, SC33-7989

Customization and Tuning
v z/VM: CP Exit Customization, SC24-6176

v z/VM: Performance, SC24-6208

Operation and Use
v z/VM: CMS Commands and Utilities Reference,

SC24-6166

v z/VM: CMS Pipelines Reference, SC24-6169

v z/VM: CMS Pipelines User’s Guide, SC24-6170

v z/VM: CMS Primer, SC24-6172

v z/VM: CMS User’s Guide, SC24-6173

v z/VM: CP Commands and Utilities Reference,
SC24-6175

v z/VM: System Operation, SC24-6233

v z/VM: TCP/IP User’s Guide, SC24-6240

v z/VM: Virtual Machine Operation, SC24-6241

v z/VM: XEDIT Commands and Macros
Reference, SC24-6244

v z/VM: XEDIT User’s Guide, SC24-6245

v CMS/TSO Pipelines: Author’s Edition,
SL26-0018

Application Programming
v z/VM: CMS Application Development Guide,

SC24-6162

v z/VM: CMS Application Development Guide for
Assembler, SC24-6163

v z/VM: CMS Application Multitasking, SC24-6164

v z/VM: CMS Callable Services Reference,
SC24-6165

v z/VM: CMS Macros and Functions Reference,
SC24-6168

© Copyright IBM Corp. 2007, 2009 241

http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

v z/VM: CP Programming Services, SC24-6179

v z/VM: CPI Communications User’s Guide,
SC24-6180

v z/VM: Enterprise Systems Architecture/
Extended Configuration Principles of Operation,
SC24-6192

v z/VM: Language Environment User’s Guide,
SC24-6199

v z/VM: OpenExtensions Advanced Application
Programming Tools, SC24-6202

v z/VM: OpenExtensions Callable Services
Reference, SC24-6203

v z/VM: OpenExtensions Commands Reference,
SC24-6204

v z/VM: OpenExtensions POSIX Conformance
Document, GC24-6205

v z/VM: OpenExtensions User’s Guide,
SC24-6206

v z/VM: Program Management Binder for CMS,
SC24-6211

v z/VM: Reusable Server Kernel Programmer’s
Guide and Reference, SC24-6220

v z/VM: REXX/VM Reference, SC24-6221

v z/VM: REXX/VM User’s Guide, SC24-6222

v z/VM: Systems Management Application
Programming, SC24-6234

v z/VM: TCP/IP Programmer’s Reference,
SC24-6239

v Common Programming Interface
Communications Reference, SC26-4399

v Common Programming Interface Resource
Recovery Reference, SC31-6821

v z/OS: IBM Tivoli Directory Server Plug-in
Reference for z/OS, SA76-0148

v z/OS: Language Environment Concepts Guide,
SA22-7567

v z/OS: Language Environment Debugging
Guide, GA22-7560

v z/OS: Language Environment Programming
Guide, SA22-7561

v z/OS: Language Environment Programming
Reference, SA22-7562

v z/OS: Language Environment Run-Time
Messages, SA22-7566

v z/OS: Language Environment Writing ILC
Applications, SA22-7563

v z/OS MVS Program Management: Advanced
Facilities, SA22-7644

v z/OS MVS Program Management: User’s Guide
and Reference, SA22-7643

Diagnosis
v z/VM: CMS and REXX/VM Messages and

Codes, GC24-6161

v z/VM: CP Messages and Codes, GC24-6177

v z/VM: Diagnosis Guide, GC24-6187

v z/VM: Dump Viewing Facility, GC24-6191

v z/VM: Other Components Messages and
Codes, GC24-6207

v z/VM: TCP/IP Diagnosis Guide, GC24-6235

v z/VM: TCP/IP Messages and Codes,
GC24-6237

v z/VM: VM Dump Tool, GC24-6242

v z/OS and z/VM: Hardware Configuration
Definition Messages, SC33-7986

z/VM Facilities and Features

Data Facility Storage
Management Subsystem for VM
v z/VM: DFSMS/VM Customization, SC24-6181

v z/VM: DFSMS/VM Diagnosis Guide,
GC24-6182

v z/VM: DFSMS/VM Messages and Codes,
GC24-6183

v z/VM: DFSMS/VM Planning Guide, SC24-6184

v z/VM: DFSMS/VM Removable Media Services,
SC24-6185

v z/VM: DFSMS/VM Storage Administration,
SC24-6186

Directory Maintenance Facility for
z/VM
v z/VM: Directory Maintenance Facility

Commands Reference, SC24-6188

v z/VM: Directory Maintenance Facility Messages,
GC24-6189

v z/VM: Directory Maintenance Facility Tailoring
and Administration Guide, SC24-6190

Open Systems Adapter/Support
Facility
v System z10, System z9 and eServer zSeries:

Open Systems Adapter-Express Customer’s
Guide and Reference, SA22-7935

v System z9 and eServer zSeries 890 and 990:
Open Systems Adapter-Express Integrated
Console Controller User’s Guide, SA22-7990

242 z/VM: TCP/IP LDAP Administration Guide

v System z: Open Systems Adapter-Express
Integrated Console Controller 3215 Support,
SA23-2247

Performance Toolkit for VM™

v z/VM: Performance Toolkit Guide, SC24-6209

v z/VM: Performance Toolkit Reference,
SC24-6210

RACF® Security Server for z/VM
v z/VM: RACF Security Server Auditor’s Guide,

SC24-6212

v z/VM: RACF Security Server Command
Language Reference, SC24-6213

v z/VM: RACF Security Server Diagnosis Guide,
GC24-6214

v z/VM: RACF Security Server General User’s
Guide, SC24-6215

v z/VM: RACF Security Server Macros and
Interfaces, SC24-6216

v z/VM: RACF Security Server Messages and
Codes, GC24-6217

v z/VM: RACF Security Server Security
Administrator’s Guide, SC24-6218

v z/VM: RACF Security Server System
Programmer’s Guide, SC24-6219

v z/VM: Security Server RACROUTE Macro
Reference, SC24-6231

Remote Spooling
Communications Subsystem
Networking for z/VM
v z/VM: RSCS Networking Diagnosis, GC24-6223

v z/VM: RSCS Networking Exit Customization,
SC24-6224

v z/VM: RSCS Networking Messages and Codes,
GC24-6225

v z/VM: RSCS Networking Operation and Use,
SC24-6226

v z/VM: RSCS Networking Planning and
Configuration, SC24-6227

v Network Job Entry: Formats and Protocols,
SA22-7539

Prerequisite Products

Device Support Facilities
v Device Support Facilities: User’s Guide and

Reference, GC35-0033

Environmental Record Editing
and Printing Program
v Environmental Record Editing and Printing

Program (EREP): Reference, GC35-0152

v Environmental Record Editing and Printing
Program (EREP): User’s Guide, GC35-0151

Other TCP/IP Related
Publications
This section lists other publications, outside the
z/VM V6.1 library, that you may find helpful.

v TCP/IP Tutorial and Technical Overview,
GG24-3376

v TCP/IP Illustrated, Volume 1: The Protocols,
SR28-5586

v Internetworking with TCP/IP Volume I:
Principles, Protocols, and Architecture,
SC31-6144

v Internetworking With TCP/IP Volume II:
Implementation and Internals, SC31-6145

v Internetworking With TCP/IP Volume III:
Client-Server Programming and Applications,
SC31-6146

v DNS and BIND in a Nutshell, SR28-4970

v "MIB II Extends SNMP Interoperability," C.
Vanderberg, Data Communications, October
1990.

v "Network Management and the Design of
SNMP," J.D. Case, J.R. Davin, M.S. Fedor, M.L.
Schoffstall.

v "Network Management of TCP/IP Networks:
Present and Future," A. Ben-Artzi, A. Chandna,
V. Warrier.

v "Special Issue: Network Management and
Network Security,"ConneXions-The
Interoperability Report, Volume 4, No. 8, August
1990.

v The Art of Distributed Application: Programming
Techniques for Remote Procedure Calls, John
R. Corbin, Springer-Verlog, 1991.

v The Simple Book: An Introduction to
Management of TCP/IP-based Internets,
Marshall T Rose, Prentice Hall, Englewood
Cliffs, New Jersey, 1991.

Bibliography 243

244 z/VM: TCP/IP LDAP Administration Guide

Index

Special characters
_passwd ()

errno values returned by 60
’ (apostrophe) 10
> (greater than sign) 10
(pound sign support in SDBM) 65
(pound sign) 10
+ (plus sign) 10
= (equal sign) 10

A
abandon behavior 180
abbreviations and acronyms 231
ABSTRACT object class type 19, 28
access

determining 103
access classes

attribute 100
determining 98
permissions 101

access control
See also Access Control List (ACL)
attributes 97
groups 108
LDAP server capability 5
using 97
using RACF 59

access control and ownership
modify DN 44

Access Control List (ACL)
aclEntry attribute 98
aclPropagate attribute 101
aclSource attribute 102
attribute classes 105
creating a group for 118
creating owner for entry 114
deleting owner for entry 117
description 4, 97
entryOwner attribute 102
examples 107
filters 105
groups 108
information, retrieving 109
modifying owner for entry 116
override example 107
ownerPropagate attribute 102
ownerSource attribute 102
propagation 102, 106
requested attributes 106
searching 105

ACL (Access Control List)
See Access Control List (ACL) 4

ACL attributes
entry owner attributes 97

ACL restrictions group gathering 89
acl restrictions group membership 88

aclEntry attribute
description 98

aclEntry syntax 98
aclPropagate attribute

description 101
aclSource attribute

description 102
adding, modifying, deleting group entries examples 89
administration

restricting access 4
alias

description 137
alias entry 138
aliases

LDAP server capability 5
aliasing on search performance

search performance 137
analyzing

schema errors 33
anonymous searches 106
apostrophe 10
arranging information 2
Associating

LDAP attributes 61
attribute

object class 3
syntaxes 20

attribute classes
searching 105

Attribute encryption
description 7

attribute types
description 15
format 26
usage 26

attributes
access allowed for 98
access classes 98, 100
access control 97
aclEntry 98
aclPropagate 101
aclSource 102
cn 123
deleting in SDBM 78
description 124
determining 9
entryOwner 102
ibm-entryuuid 7, 8
jpegPhoto 2
LDAP schema 22
mail 2
mandatory for replica entry 123
multi-valued ref 155
multi-valued with RACF 70
normalizing 180
optional for replica entry 124
ownerpropagate 102
ownerSource 102

© Copyright IBM Corp. 2007, 2009 245

attributes (continued)
ref 155
replicaBindDN 123
replicaBindMethod 124
replicaCredentials 123
replicaHost 123
replicaPort 124
replicaUpdateTimeInterval 124
replicaUseSSL 124
requested 106
returning lowercase 180
searching 105
seeAlso 124
syntaxes 9
type 14

attributeTypes schema attribute 18, 27
authenticateOnly server control 219
authentication

client 6
server 6

authentication bind
CRAM-MD5 and DIGEST-MD5 7

AUXILIARY object class type 19, 28

B
backend

See also SDBM backend
multiple 5
referral entries 156

backslash character
DN syntax 10

backup of master server 121
benefits of replication 121
bind, SASL 6
binding

authenticateOnly server control 219
blank spaces

using in DNs 10
building

directory namespace 168

C
cache tuning 196
capabilities of LDAP server 5
certificate

client 6
certificate management 193
change log

additional required configuration 146
set up and using LDAP server for logging

changes 151
when changed are logged 147

change log entries 148
change log information root DSE entry 150
change log schema 147
change logging 145

LDAP server capability 6
CICS (Customer Information Control System)

updating related attributes 70

classes, access
attribute 100
determining 98
permissions 101
specifying for LDBM 19

client, LDAP
See LDAP client 177

complex modify DN replication 122
concurrent database instances 5
configuration file

default referral 157
master server 132
setting SSL keywords 132

configuring
LDAP server capability 6
replica server 127

configuring file-based GDBM backend
file-based GDBM backend 146

configuring GDBM backend
GDBM backend 146

conflict resolution
peer to peer 130

connection
group 70

Control of access to RACF data
access to RACF data 66

controls, server
See server controls 7

CRAM-MD5 and DIGEST-MD5 81
configuration option 83
LDBM backend 81

CRAM-MD5 and DIGEST-MD5 authentication 7
CRAM-MD5 support 180
creating

ACL 110
group for ACL 118
owner for entry 114
referral entries 155

critical access class 100

D
DAP (Directory Access Protocol)

See Directory Access Protocol (DAP) 4
data model

LDAP 9
databases

multiple instances 5
debug settings 195
default

referral 157
defining

default referral 157
deleting

ACL 114
attributes in SDBM 78
owner for entry 117

DES encryption method 122
directory

description 167
hierarchy example 2

246 z/VM: TCP/IP LDAP Administration Guide

directory (continued)
identifying entry in 9
namespace 167
schema, LDBM 13
updating 4

Directory Access Protocol (DAP)
defining 4

directory namespace
example of building 168
organizing 167

directory service
description 1

displaying
schema entry 34, 35

displaying group membership 88
distinguished name (DN)

description 2, 9
length, maximum 9
pound sign (#) 65
RACF-style 11
ref attribute 155
referencing by 3
reflecting 102
syntax 10

DN (distinguished name)
See distinguished name (DN) 2

DN modify
ownership changes 48

DNs and access groups
bound user 108

domain component naming 11
ds2ldif utility

replicating 127
DSE, root

See root DSE 7
dynamic groups 85
dynamic schema

LDBM 13

E
editing LDIF files 171
elements

schema, defining new 28
entries

access allowed for 98
aclSource attribute 102
adding to directory 170
arranging 2
creating for referrals 155
data model 9
defining 9
description 2
entryOwner attribute 102
identifying 9
loading 170
ownerPropagate attribute 102
ownerSource attribute 102
permissions 101
protecting 97
referral 156

entries (continued)
replica 123
replica, adding in LDBM 125

entryOwner attribute
description 102

equal sign 10
errno values returned by _passwd() 60
error codes 180
errors

schema, analyzing 33
example

CRAM-MD5 and DIGEST-MD5 83
examples

ACL 107
aclEntry attribute 106
adding a group to RACF 77
adding user to RACF 75
alias examples 140
attribute definition 100
building directory namespace 168
configuration file 169, 174
connecting user to group in RACF 77
directory hierarchy 2
DNs 10
LDIF file 171
modifying user in RACF 76
object class hierarchy 19
overrides 107
permissions 104
propagation 106
referral entries 157
referrals, distributing namespace 160
removing user from group in RACF 78
removing user from RACF 78
replica entry definition 125
schema entry 14
searching for user information in RACF 76
searching for user’s connection to group 77
using ref attribute 155

extended group membership searching 7
extensibleObject object class 28
external bind, SASL 6

F
files

generating 172
LDIF format 170

filters
searching 105

finding
subschemaSubentry DN 35

formats
GIF 2
JPEG 2

front end
for X.500 4

Index 247

G
GDBM backend

initializing ACLs 103
GDBM change log performance considerations

changelog performance 208
GDS (Global Directory Service)

See Global Directory Service (GDS) 4
general performance considerations

server performance 195
Generalized Time syntax 34
GIF format 2
Global Directory Service (GDS) 4
group examples 89
group membership 87, 219
groups

access control 108
connecting to in RACF 70
creating for ACL 118
extended, membership searching 7
universal, searching 73

gskkyman utility 193

H
hierarchical tree

defining 2
hierarchy

directory 9
directory, example of 2
example, object class 19
laying out entries in 168
referrals 156

I
IBM attribute types

description 18
format 27
usage 27

ibm-entryuuid
replication 122

ibm-entryuuid,attribute 7
IBMAttributeTypes schema attribute 18, 27
IBMSchemaReplaceByValue 220
IBMSchemaReplaceByValueControl 220
information

arranging 2
layout 167
protecting 4
referencing 3

inheritance
default 102

initializing
replica directory 127

Initializing ACLs with schema entry
Initializing ACLs 103

international characters
retrieving 6
storing 6

J
JPEG format 2

K
key management 193

L
lA5 character set 180
large access groups 206
layout, information 167
LDAP (Lightweight Directory Access Protocol)

See Lightweight Directory Access Protocol
(LDAP) 2

LDAP client
authenticateOnly server control 219
considerations 177
using in LDAP 4
UTF-8 data 180

LDAP daemon
See LDAP server 2

LDAP Data Interchange Format (LDIF)
description 170

LDAP directory
protecting information in 4

LDAP schema attributes 22
ldap server

threads 195
LDAP server

access control 97
attribute types supported 26
authenticateOnly server control 219
capabilities 5
changing replica to master 129
data model 9
example configuration 168
extended group membership searching 7
IBM attribute types supported 27
LDAP syntaxes supported 22
master and replica 132
matching rules supported 23
model for 2
naming 5
object classes supported 27
overview 1
RACF 59
replica 127
replication 121
SDBM backend 59
using 4
Version 3 protocol 6

LDAP syntaxes
description 20
format 22
supported, general use 22
supported, server use 23
usage 22

LDAPResult construct 180

248 z/VM: TCP/IP LDAP Administration Guide

LDBM backend
access control

pseudo DN 99
adding replica entries 125
attribute types supported 26
CRAM-MD5 and DIGEST-MD5 81
Default ACLs 103
IBM attribute types supported 27
initializing ACLs 103
matching rules supported 23
object class supported 27
RDN 9

LDBM schema
setting up 13
upgrading 13

LDIF files
editing 171

less than sign 10
Lightweight Directory Access Protocol (LDAP)

description 2
how it works 4
schema publication 13

limitations, referrals 158
loading

directory information 170
locating

subschemaSubentry DN 35

M
mail attribute 2
maintenance mode

peer to peer 126
manageDsaIT 159
manageDsaIT server control 219, 220, 221
managing PKI private keys and certificates 193
master

backup of 121
changing replica to 129
communicating with replica 132
database, description 121
server 121
server, setting up 132
using replication 174

matching rules
description 20
EQUALITY values 17
EQUALITY, defaults 16
format 23
ORDERING values 17
SUBSTR values 17
supported 24
usage 23

MAY attribute type 19, 28
mdoify DN

access control 44
membership

extended group, searching 7
minimum schema for LDBM 209
modify

updating ACLs 110

modify DN
access control changes 46
complex replication 122
considerations 43
considerations in the use of 41
entries for rename 42
operation syntax 37
operations and replication 55
relocating an entry 45
replication synchronization 57
scenario constraints 49
SDBM schema 65
suffix DNs 49

Modify DN
validation 56

monitor search examples 204
monitor support 180
monitoring performance 199
multi-valued ref attribute 155
multiple databases

concurrent 5
multiple directories

replication of 121
multiple socket ports 7
MUST attribute type 19, 28

N
namespace

directory 167
entries, RACF 65
hierarchy diagram for RACF 65

native authentication
capability 6

nested groups 87
normal access class 100
numeric object identifier (OID) 29

O
object class

adding for LDBM 27
definitions, adding for LDBM 27
description 9, 19
extensibleObject 28
format for LDBM 27
hierarchy 19
LDBM usage 27
person 167
referral 155
replicaObject 123

object class attribute
description 3

object class definitions
adding for LDBM 27
specifying for LDBM 27

object identifiers
oid

supported and enabled capabilities 178
objectClass attribute 14

Index 249

objects
protecting 97

oedit editor 171
OID (numeric object identifier) 29
operations

defining 4
organizing

directory namespace 167
information 2

out-of-sync conditions 135
overhead, reducing 5
override, ACL example 107
owner

creating for entry 114
deleting for entry 117
modifying for entry 116
ownerPropagate attribute 102
ownerSource attribute 102

ownerPropagate attribute
description 102

ownerSource attribute
description 102

P
password encryption

replication 122
password or password phrase

RACF
changing using SDBM 74

password phrase 74
passwords in change log entries 150
peer replica

Adding to existing server 130
peer server

Downgrade to read-only replica 132
peer to peer

peer to peer replication 130
Performance tuning

tuning 195
performance, LDAP server 5
periodic checks

modify DN 56
permissions

access 98
attribute access classes 101
determining 103
entry 101
examples 104

Persistent 221
Persistent search 7
PersistentSearch 221
places, modeling information for 168
Plug-in support 8
plus sign 10
port

multiple socket 7
pound sign (#) support in SDBM 65
propagation, ACL

description 106
example 106

propagation, ACL (continued)
indicating, flag for 101

protecting
information 4
information using ACLs 97

protection, scope of
attribute privileges 99
determining 98

protocol
directory 2
Version 3 6

pseudo DN 99
publication, schema 13
pwEncryption option 122

Q
querying

root DSE 177
schema 14
subschemaSubentry 15

querying group membership examples 91

R
racfAttributes

racfConnectAttributes 64
RDN (relative distinguished name)

See relative distinguished name (RDN) 3
read-only replica

Upgrading to be a peer replica of the master
server 131

reason codes 180
recovering

from out-of-sync conditions 135
ref attribute 155
references

setup, recommended 156
referencing information 3
referrals

default 170
default, defining 157
description 155, 173
example of distributing namespace 160
LDAP server capability 5
limitations with version 2 158
manageDsaIT server control 219, 220, 221
object 173
processing 158
replication 129
specifying 170
suppressing 219, 220, 221
Version 2 protocol 158
Version 3 protocol 159

related protocols 225
relative distinguished name (RDN)

description 3, 9
relocating an entry with DN realignment 45
Replacing individual schema values

Replacing values 31

250 z/VM: TCP/IP LDAP Administration Guide

replica
changing to master 129
communicating with master 132
entry 132
setting up 132, 174

replicateOperational 223
replicateOperationalAttributes 223
replicating

server 122
replication

associating servers with 160
benefits 121
database,description 121
description 121
entries 123
entries, adding in LDBM 125
ibm-entryuuid 122
LDAP server capability 5
password encryption 122
server 127
server, configuring 127
setting up for 174
SSL 132
troubleshooting 134

requested attributes 106
Resource Access Control Facility (RACF)

changing password or password phrase with
SDBM 74

configuring LDAP server for 5
connection to group 70
distinguished names 11
LDAP access to 59
namespace entries 65
RACF fields 61
univeral groups

searching 73
retrieving racf

racf password envelope
user password or password phrase

envelopes 74
Robust general-purpose databases 5
root DSE

searching 177
support of 7

rules, matching
See matching rules 23

running
LDAP tools with SDBM 66

S
samples

object class hierarchy 19
schema entry 14

SASL CRAM-MD5 and DIGEST-MD5 7
SASL external bind 6
schema

dynamic 6
schema (LDBM) 123

attribute syntax 20
attribute types 26

schema (LDBM) (continued)
defining new elements 28
entry, displaying 34
errors, analyzing 33
IBM attribute types 27
LDAP attributes 22
LDAP syntaxes supported 22
matchng rules 23
minimum schema 209
object classes 27
retrieving LDBM 34
sample entry 14
searching for schema entry 35
updating LDBM 30

scope of protection
attribute privileges 99
determining 98

SDBM authorization 59
SDBM backend

changing password in RACF 74
connection to group 70
deleting attributes 78
implementing 5, 59
namespace hierarchy 65
pound sign (#) support 65
RACF-style DNs 11
running LDAP tools with 66
schema publication 13
using for authentication 97
using LDAP operation utilities with 75

SDBM performance considerations 208
SDBM schema

modify DN 65
SDBM search capabilities

SDBM search 71
search 7
searching

across multiple servers 155
anonymous 106
directories 4
entire RACF database 73
permissions required 105
replication 121
root DSE 177
schema entry 35
using attributes 105

searching the change log 149
Secure Sockets Layer (SSL)

configure LDAP server using 6
enablement 132
replication 132

sendV3stringsoverV2as option 180
sensitive access class 100
server

associating with referrals 156
master 132
master, problems 134
parent 156
pointing to others 156
referrals 155
replica 127, 132

Index 251

server (continued)
retrieving ACL information 109
using in LDAP 4

server configuration
peer to peer 130

server controls
authenticateOnly 219
LDAP server capability 7
manageDsaIT 219, 220, 221
PersistentSearch 221
replicateOperationalAttributes 223

server replication
modify DN 57

setting up
directory namespace 167

single-server mode
replicating in 121

socket ports, multiple 7
space, white 10
spaces, blank 10
Special usage of racfAttributes and

racfConnectAttributes
racfAttributes and racfConnectAttributes 64

SSL tracing information 193
static

dynamic
nested groups 85

static groups 85
storing information 2
STRUCTURAL object class type 19, 28
subject

determining rights for 98
subschemaSubentry attribute 15
subschemaSubentry DN 35
synchronizing databases 175
synchronizing directories 121
syntax

DN 10
EQUALITY matching rules 16, 17
ORDERING matching rules 17
schema attribute 20
SUBSTR matching rules 17

syntax diagram
examples

default xi
fragment xi
return arrow x
symbols x
variable x

table x

T
threads

for performance 5
tree structure

hierarchical 2
trimming change log 150
troubleshooting

reason codes 180
replication 134

types of information to store 2

U
universal groups

searching 73
unloading and loading change log 150
unsynchronized directories 135
update, LDBM schema 30
updating

schema errors 33
Updating a numeric object identifier (NOID)

Updating a NOID
NOID 33

user Attribute encryption
See Attribute encryption 7

UTC Time syntax 34
UTF-8 characters

retrieving 6
storing 6, 180

utilities
LDAP operation

using with SDBM 75

V
V2 protocol

See Version 2 protocol 158
V3 protocol

See Version 3 protocol 6
ValueControl

ibmSchema 220
Version 2 protocol

referrals 158
referrals, limitations 158

Version 3 protocol
LDAP support of 6
referrals 159
UTF-8 characters 180

W
white space 10

X
X.500

data model 9
description 4

252 z/VM: TCP/IP LDAP Administration Guide

����

Program Number: 5741-A07

Printed in USA

SC24-6236-00

	Contents
	About this document
	Intended audience
	Conventions and terminology
	How the term “internet” is used in this document
	How to Read Syntax Diagrams

	Where to Find More Information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	SC24-6236-00, z/VM Version 6 Release 1

	Chapter 1. Introducing the LDAP server
	What is a directory service?
	What is LDAP?
	How is information stored in the directory?
	How is the information arranged?
	How is the information referenced?
	How is the information accessed?
	How is the information protected from unauthorized access?
	How does LDAP work?
	What about X.500?

	What are the capabilities of the z/VM LDAP server?

	Chapter 2. Data model
	Relative distinguished names
	Distinguished name syntax
	Domain component naming
	RACF-style distinguished names

	Chapter 3. LDAP directory schema
	Setting up the schema for LDBM - new users
	Upgrading schema for LDBM
	Schema introduction
	Schema attribute syntax
	LDAP schema attributes
	LDAP syntaxes
	Matching rules
	Attribute types
	IBM attribute types
	Object classes

	Defining new schema elements
	Updating the schema
	Changing the initial schema
	Replacing individual schema values
	Updating a numeric object identifier (NOID)
	Analyzing schema errors

	Retrieving the schema
	Displaying the schema entry
	Finding the subschemaSubentry DN

	Chapter 4. Modify DN operations
	Modify DN operation syntax
	Considerations in the use of Modify DN operations
	Eligibility of entries for rename
	Concurrency considerations between Modify DN operations and other LDAP operations
	Access control and ownership
	Relocating an entry
	Relocating an entry with DN realignment requested
	Access control changes
	Ownership changes
	Modify DN operations related to suffix DNs
	Scenario constraints
	Example scenarios

	Modify DN operations and replication
	Periodic validation of compatible server versions in replica servers
	Loss of replication synchronization due to incompatible replica server versions
	Loss of replication synchronization due to incompatible replica server versions - recovery

	Chapter 5. Accessing RACF information
	SDBM authorization
	Binding using a RACF user ID and password or password phrase
	SDBM group gathering
	Associating LDAP attributes to RACF fields
	Special usage of racfAttributes and racfConnectAttributes
	RACF namespace entries
	SDBM schema information
	SDBM support for pound sign

	Control of access to RACF data
	SDBM operational behavior
	SDBM search capabilities
	Searching the entire RACF database

	Retrieving RACF user password and password phrase envelopes
	Using SDBM to change a user password or password phrase in RACF
	Using LDAP operation utilities with SDBM
	Example: adding a user to RACF
	Example: modifying a user in RACF
	Example: searching for user information in RACF
	Example: searching for a user′s password and password phrase envelopes in RACF
	Example: adding a group to RACF
	Example: connecting a user to a group in RACF
	Example: searching for information about a user′s connection to a group in RACF
	Example: removing a user from a group in RACF
	Example: removing a user from RACF

	Deleting attributes

	Chapter 6. CRAM-MD5 and DIGEST-MD5 authentication
	DIGEST-MD5 bind mechanism restrictions in the z/VM LDAP server
	Considerations for setting up an LDBM backend for CRAM-MD5 and DIGEST-MD5 authentication
	CRAM-MD5 and DIGEST-MD5 configuration option
	Example of setting up for CRAM-MD5 and DIGEST-MD5

	Chapter 7. Static, dynamic, and nested groups
	Static groups
	Dynamic groups
	Nested groups
	Determining group membership
	Displaying group membership
	ACL restrictions on displaying group membership
	ACL restrictions on group gathering

	Group examples
	Examples of adding, modifying, and deleting group entries
	Examples of querying group membership

	Chapter 8. Using access control
	Access control attributes
	aclEntry attribute
	Syntax
	Scope of protection
	Attribute access classes
	Access permissions

	aclPropagate attribute
	aclSource attribute
	entryOwner attribute
	ownerPropagate attribute
	ownerSource attribute

	Initializing ACLs with LDBM
	Default ACLs with LDBM
	Initializing ACLs with GDBM
	Initializing ACLs with schema entry
	Access determination
	Search
	Filter
	Compare
	Requested attributes

	Propagating ACLs
	Example of propagation
	Examples of overrides
	Other examples

	Access control groups
	Associating DNs and access groups with a bound user
	Deleting a user or a group
	Retrieving ACL information from the server
	Creating and managing access controls
	Creating an ACL
	Modifying an ACL
	Deleting an ACL
	Creating an owner for an entry
	Modifying an owner for an entry
	Deleting an owner for an entry
	Creating a group for use in ACLs and entry owner settings

	Chapter 9. Replication
	ibm-entryuuid replication
	Complex modify DN replication
	Password encryption and replication
	Replicating server
	Replica entries

	Adding replica entries in LDBM
	Searching a replica entry
	Displaying replication status

	Maintenance mode
	Replica server
	Populating a replica
	Configuring the replica
	LDAP update operations on read-only replicas

	Changing a read-only replica to a master
	Peer to peer replication
	Server configuration
	Conflict resolution

	Adding a peer replica to an existing server
	Upgrading a read-only replica to be a peer replica of the master server
	Downgrading a peer server to read-only replica
	SSL/TLS and replication
	Replica server with SSL/TLS enablement
	Replicating server with SSL/TLS enablement

	Replication error log
	Troubleshooting
	Recovering from out-of-sync conditions

	Chapter 10. Alias
	Impact of aliasing on search performance
	Alias entry
	Alias entry rules

	Dereferencing an alias
	Dereferencing during search
	Dereference options
	Dereferencing during finding the search base
	Dereferencing during searching in subtree searches
	Dereferencing during searching in one-level searches
	Dereferencing and root DSE subtree search
	Errors during dereferencing

	Alias examples

	Chapter 11. Change logging
	Configuring the GDBM backend
	Configuring a file-based GDBM backend

	Additional required configuration
	When changes are logged
	RACF changes
	LDBM and schema changes

	Change log schema
	Change log entries
	Searching the change log
	Passwords in change log entries
	Unloading and loading the change log
	Trimming the change log
	Change log information in the root DSE entry
	How to set up and use the LDAP server for logging changes

	Chapter 12. Referrals
	Using the referral object class and the ref attribute
	Creating referral entries

	Associating servers with referrals
	Pointing to other servers
	Defining the default referral

	Processing referrals
	Using LDAP Version 2 referrals
	Limitations with LDAP Version 2 referrals

	Using LDAP Version 3 referrals
	Bind considerations for referrals

	Example: associating servers through referrals and replication

	Chapter 13. Organizing the directory namespace
	Information layout
	Example of building an enterprise directory namespace
	Priming the directory servers with information
	Using LDIF format to represent LDAP entries
	Generating the file

	Setting up for replication
	Defining another LDAP server
	Preparing the replica
	Resynching the replica and master servers

	Notifying users of the replica

	Chapter 14. Client considerations
	Root DSE
	Root DSE search with base scope
	Root DSE search with subtree scope (Null-based subtree search)

	Monitor support
	CRAM-MD5 authentication support
	UTF-8 data over the LDAP Version 2 protocol
	Attribute types stored and returned in lowercase
	Abandon behavior
	Reason codes

	Chapter 15. SSL Certificate/Key Management and SSL Tracing Information
	Key Database Files
	SSL Tracing Information

	Chapter 16. Performance tuning
	Overview
	General LDAP server performance considerations
	Threads
	Debug settings
	Storage in the LDAP virtual machine
	LDAP server cache tuning
	Operations monitor

	LDBM performance considerations
	Storage in the LDAP virtual machine for LDBM data
	LDAP server initialization time with LDBM
	Database commit processing
	DASD space for LDBM data

	Monitoring performance with cn=monitor
	Monitor search examples

	Large access groups considerations
	LE heap pools considerations

	GDBM (Changelog) performance considerations
	SDBM performance considerations

	Appendix A. Initial LDAP server schema
	Appendix B. Supported server controls
	authenticateOnly
	IBMModifyDNRealignDNAttributesControl
	IBMModifyDNTimelimitControl
	IBMSchemaReplaceByValueControl
	manageDsaIT
	PersistentSearch
	replicateOperationalAttributes

	Appendix C. Related Protocol Specifications
	Appendix D. Abbreviations and Acronyms
	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation and Use
	Application Programming
	Diagnosis

	z/VM Facilities and Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility for z/VM
	Open Systems Adapter/Support Facility
	Performance Toolkit for VM™
	RACF® Security Server for z/VM
	Remote Spooling Communications Subsystem Networking for z/VM

	Prerequisite Products
	Device Support Facilities
	Environmental Record Editing and Printing Program

	Other TCP/IP Related Publications

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

